Improving Dorm Room Assignments
Using Simulated Annealing

by

Elena Settanni

B.A., Mathematics, University of Florida, 1977
M.B.A., Business Administration, Pepperdine University, 1987

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2000

(©2000, Elena Settanni

iii

Dedication

To my husband for his support, encouragement and questions

iv

Acknowledgments

Both as a computer science student and UNM Business Services staff, dorm assign-
ments has been an interesting and challenging problem for me. I am pleased to have
had the opportunity to work on it.

Thanks to the support of the following people, the resulting software is now used
at UNM:

My principal end user, Dianne Ranville, UNM Housing Reservations Supervi-
sor, whose willingness to try something new is largely responsible for the profound
satisfaction of being in production. Conversations with Sally Jaramillo, Housing
Reservations Accounting Clerk, were most helpful in learning specific details about
the existing system and procedures. U. Stephen Allison, Manager of Business Oper-
ations, has balanced the need for new answers and reliable product support.

Discussions with the following professors at UNM have offered many insights:
The awareness of ‘MCMC’ and related scheduling problems from my advisor, Barak
Pearlmutter; the significance of ‘listening to the zeros’ from Jim Ellison of the Math
Department; the confidence programming in C after Barney Maccabe’s Compiler
Construction class; and the hacks in response to Dave Ackley’s incisive questions.

Thanks to Dr. Sheldon Ackley for his helpful comments as an early reader, and
my committee members, Professors Barak Pearlmutter, Arthur B. Maccabe, and
Charles P. Crowley, for their time reviewing this manuscript.

Improving Dorm Room Assignments
Using Simulated Annealing

by

Elena Settanni

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2000

Improving Dorm Room Assignments
Using Simulated Annealing

by

Elena Settanni

B.A., Mathematics, University of Florida, 1977
M.B.A., Business Administration, Pepperdine University, 1987

M.S., Computer Science, University of New Mexico, 2000

Abstract

Assigning dorm rooms to 2,000 students with complex and interdependent prefer-
ences is a difficult problem. User dissatisfaction with an existing proprietary com-
mercial matching system afforded an opportunity to consider fresh approaches. This
project, begun August 1998, has focussed on using simulated annealing to optimize
dorm room assignments. The project goals are to improve usability and resource uti-
lization of the assignment process, offering better, faster matches for happier students
and staff. Having completed its third semester of production use at UNM, results
show that the Dorm Assignment Optimizer (DAO) works well producing assignments

far superior to the previous system, in a fraction of the time.

vii

Contents

List of Figures xii
List of Tables xiv
Glossary XV
1 Choices, Chances and Results 1
1.1 Choices: The Dorm Assignment Problem 2
1.1.1 Background Lo o 2

1.1.2 The Environment0 4

1.2 Chances: The Simulated Annealing Solution 6
1.2.1 Introduction to Annealing and Simulated Annealing 7

1.2.2 Optimizing Dorm Assignments 11

1.3 Results: Fall 1998 — Fall 2000 13

2 Choices: The Dorm Assignment Problem 14

viii

Contents

2.1 The Objective Function 14
2.1.1 Neighborhood Landscapes 15

2.1.2 Constraint Costso 20

2.1.3 Modifying the Objective Function 22

2.2 Choicesin Policy oo 24
2.2.1 Inflationary Costso 25

2.2.2 Multiple Assignment Runs 26

2.3 ChoicesintheData oo 27

3 Chances: The Simulated Annealing Solution 30
3.1 Simulated Annealing Schedules 0. 30
3.2 Dorm Assignments: Five Cooling Schedules 33
3.3 Guaranteed Local Minimum L., 38
3.4 Discussion: Adaptive Schedules 38
3.5 Handling Ties L 40

4 Results: Fall 1998 — Fall 2000 42
4.1 The Artifacto 42
4.1.1 Choosing Constraint Coefficients 43

4.1.2 Between Two Systems 44

4.1.3 Batch Management 45

X

Contents

4.1.4 Checkpoint Restart 45

4.1.5 Security Issues Lo 46

4.1.6 Efficiency Considerations 46

4.2 Case Studies 48
4.2.1 Fall 1998, versions v0.01 -v0.39 49

4.2.2 Fall 1999, versions v0.40 - v0.85 50

4.2.3 Spring 2000, versions v0.90 - v1.03 51

4.2.4 Fall 2000, versions v1.04 - v1.15 52

4.3 Experimental Results 55
4.3.1 Characteristicsof the Data 56

4.3.2 Methodology Lo o7

4.3.3 Random Optimization 59

4.3.4 Taking Uphill Moves 59

4.3.5 Importance of Lateral Moves on a Mesa 62

4.3.6 Varying Probabilities for Better Moves 63

4.3.7 Reaching a Local Minimum 64

4.3.8 Comparing the Schemes: Scores and Attempts 66

5 Conclusions 69
Appendices 73

Contents

A HMS Rules for Assignment with the DAO

B The DAO Objective Function

References

xi

74

75

80

List of Figures

1.1

1.2

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

4.1

Boltzmann Probability Factor (the heart of annealing)

System Overview

Neighborhood Landscape at a Random Point

Neighborhood Landscape of the Most-senior and Least-senior Stu-

dents at a Random Pointo 00000000
Neighborhood Landscape at a Single (local optimum) Point

Neighborhood Landscape of the Most-senior and Least-senior Stu-

dents at an Optimized Point

Neighborhood Landscape of the Least-senior and First-new Students
at an Optimized Point

Temperature vs Attempts by Scheme — Samples from Fall 2000
Temperature vs Attempts by Scheme — Samples from Fall 1999

Temperature vs Attempts by Scheme — Samples from Fall 1998

Dorm_View Screenshot

xii

37

37

37

List of Figures

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Mean Rank By Method — Fall 2000 60
Mean Rank By Method — Fall 1999 60
Mean Rank By Method — Fall 1998 60
Average Score By Method — Fall 2000 61
Average Score By Method — Fall 1999 61
Average Score By Method — Fall 1998 61
Score vs Total Attempts by Scheme — Fall 2000 67
Score vs Total Attempts by Scheme — Fall 1999 67

4.10 Score vs Total Attempts by Scheme — Fall 1998 67

xiii

List of Tables

2.1

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

Constraint Classifications 20
Percentage Results from Sample and Actual Performances 36
Probability of Accepting Moves by Methods 40
DAO Process Flow oL 47
Key to Methods, 55
Statistics (in millions) from Fall 2000 Tests 58
Statistics (in millions) from Fall 1999 Tests 58
Statistics (in millions) from Fall 1998 Tests 58
Lateral Test Statistics (in millions) 63

Xiv

Glossary

Accept
Annealing

Attempt

Batch

Coefficient

Constraint

Cost
Cycle
DAO

Downhill

Equilibrium

A move that changes the current state.
The thermal process for obtaining low-energy states of a solid [AKvL97].

Repeated occurrence of the event under study, also termed trials

[DM84] (i.e. A bed and student chosen to switch in the DAO).
Method of managing DAO runs by assigning unique batch numbers.

The value associated with a constraint, such that, the more important

the constraint, the greater its value if violated.

A rule to deter mismatches from occurring by limiting the desireable

possibilities.

The value of the objective function. Same as ‘grade’.
A series of states that repeat over and over.

Dorm Assignment Optimizer.

In a minimization problem, when the change in cost of an accepted

move is negative, the overall score improves.

Indifference to previous states in a process, such that an independent

sample can be drawn.

XV

Glossary

Grade

Hillclimbing

Landscape

Lateral

Markov chain

The total costs of mismatches in a given state, according to the DAO

objective function. Same as ‘score’ and ‘cost’.

Improving moves are always accepted, deteriorating moves are never

accepted, and lateral moves may or may not be accepted.

The solution space, where the height is the overall cost at a single

data point or state.

A move that changes the state, yet leaves the score unchanged.

Named after the Russian mathematician A.A. Markov who formal-
ized the theory concerning events whose current condition depends
solely on their condition one period before, Markov chains are spe-
cial Markov processes that also assume finite states exist, constant

transition probabilities exist, and equal time periods occur [DM84].

Monte Carlo sampling First employed by J. von Neumann and other researchers in

Move

conjunction with military efforts during World War II, it is a tech-
nique used to select sample values randomly from a probability dis-

tribution for subsequent use in a simulation process [DM84].

Rearrangements of the elements in a configuration (i.e. switching a

student and bed occupant in the DAO).

Neighborhood All the possible states that could result after a single move.

Nobetter

The number of rounds to pass without seeing improvement in DAO.

Objective function The sum of constraints, each with assigned costs, resulting in a

total score.

XVi

Glossary

Phase

Random walk

Round

Scheme

Score

State

Temperature

Uphill

Virtual bed

The number of moves that must be attempted or accepted before
there is a change in temperature. Also known as the length of the

Markov chain in the simulated annealing algorithm.

An example of a Markov chain, it is not a very fast way to get
anywhere: on a coin flip, take one step to the right on heads, to the
left on tails, after 25 steps you’ll be about five steps from where you
started [Sha]. The chance of returning to the start is sharply reduced

as the problem dimension is increased.

Based on a single cooling schedule, a configuration, or state, produced

by the DAO.

A cooling schedule to govern the convergence of the simulated an-

nealing algorithm.
Same as ‘grade’.
A single data point (i.e. the assignment of each student to a bed).

The control parameter in simulated annealing representing the will-
ingness to accept a bad move. When the value is large the willingness

is greater.

As a minimization problem, when the change in cost of an accepted

move is positive, the overall score worsens.

In the DAO, a waiting list of beds not existing in physical reality.

xvii

Chapter 1

Choices, Chances and Results

The Dorm Assignment Optimizer (DAO) project focuses on using simulated anneal-
ing to optimize dorm room assignments. Juxtaposing the choices and chances un-
derlying the process of assigning dorm rooms, in this thesis, we present the essence

of the problem, our solution, and results of this two year project.

Assigning dorm rooms can be viewed as a collection of choices made by the
students and the Housing Reservations staff, and a series of chances taken by our
algorithm to produce a guaranteed local optimal assignment of students to beds.
Choices and chances is a useful distinction even though there will be some chance in

the problem and choice in the solution.

DAO production results have demonstrated superior performance in terms of
student placement and use of resources during the last three semesters of use at

UNM, over the previously used vendor-supplied mechanism.

Chapter 1. Choices, Chances and Results

1.1 Choices: The Dorm Assignment Problem

The choices that describe the dorm room assignment problem are a combination of
student requests and management decisions. Students specify their preferences for
halls, room type, non-smoking environments, music tastes, study habits, and requests
for up to five specific roommates on their application forms. Residency seniority and
prompt application submission are used to prioritize these requests — some chance

is involved in the order applications are received at the Housing office.

The Housing Reservations staff is responsible for assigning students to their beds
each semester. As proxy for the students, the Housing staff strives to minimize
complaints and maximize those who choose to reside on-campus. This one-level of
indirection provides an opportunity to gain a global perspective and an overall better

final arrangement.

In addition to previously established procedures, Housing Management makes
critical choices regarding the placement of co-eds by designating room attributes

such as gender and smoking, and prioritizing student preferences.

These human choices define the problem we describe here in further detail.

1.1.1 Background

Originally, the manual effort of assigning beds took over two weeks and many late
hours. Seven years ago, UNM began using HMS, a proprietary, commercial housing
management system! that included an assignment module. Based on the FoxPro
database system, HMS is a full-function campus housing management system that
catalogs every room and occupant, assigns beds, applies charges to student accounts,

offers work order management capabilities, and interfaces with their dining module

thttp:/ /www.cbord.com/

Chapter 1. Choices, Chances and Results

(Figure 1.2 delineated by the dotted box on page 12). It resides on a Novell file server
for multi-user accessibility. The automated bed assignment module is rule-based
with scores for successful matches and additional logic to process mutual roommate

requests.

While an improvement over doing it by hand, the HMS assignment process over
the network, took as long as 48 hours to process 700 returning students. Due to
the lengthy processing times, Dianne Ranville, the Housing Reservations Supervisor,
found it necessary to use a variety of workarounds to complete her task. For example,
she would run new and returning student assignments separately, and the process

had to be run over weekends to avoid blocking other system users.

Ranville found the rules used to make the assignments in HMS often complex
and unintuitive. Furthermore, with turnover of the support staff at CBORD, the
answers to her questions changed, and as a result, the ‘current’ set of rules never
worked exactly as desired. For example, student roommate requests would override
all the other preferences no matter what she did, often resulting in new students
incorrectly assigned to the better dorms, no regard for roommates requested by
students returning to their same room, and hall requests demoted in importance.?
In addition, HMS could not handle some specifics of the UNM dorm system, such
as assigning roommates in a co-ed dorm, popular among residents because of its
adjoining rooms. Handling such suite situations was one of Ranville’s specific requests

for an improved system.

HMS scores for the user-provided rules are restricted to powers of two, which
tended to stifle Ranville from changing their values, so instead she would deactivate
them. A rule intended to put students of closer ages together was very hard to

understand (shown on page 43), and was consequently deactivated.

2An as-yet-unreleased rewrite of HMS reportedly allows the user to adjust the impor-
tance of the roommate rule.

Chapter 1. Choices, Chances and Results

Although HMS is proprietary, based on its behavior, its assignment system ap-
pears to be strictly sequential, considering students in seniority and then reservation
order, and assigning them to the best remaining bed. As rooms fill up, the process
takes less time, according to Ranville. Also, as fewer rooms remain available, she

has to inactivate rules to allow the assignment process to complete.

Thus, user dissatisfaction with the existing proprietary matching system afforded

an opportunity to consider fresh approaches to the problem resulting in the DAO.

1.1.2 The Environment

In the UNM dorm system, there are over 2,000 beds and typically nearly 2,000 stu-
dents that must be matched. Housing Management policy shapes the environment
of the dorm system. These policies cover early student notification, first-come first-
placed, preference priority, as well as room attributes, such as gender, non-smoking,

and room type.

Early Student Notification To reduce anxiety and minimize phone call inquiries,
students are notified of their fall semester hall assignment by midsummer. After the
first cutoff in June, assignments are made as applications arrive and are entered
into HMS. As students cancel and free up the more desirable spaces, Ranville blocks
these prize locations from the automatic assignment process until she can manually
move the more senior students into such better beds. Students are kept apprised of
improvements to their assignment due to cancellations thoughout the summer and
up until the day they move in. This time-consuming ‘upgrading’ task, requiring lots
of intuition and good will on Ranville’s part, attempts to place students into their

preferred hall. Further consequences of this policy are presented in Section 2.2.2.

Chapter 1. Choices, Chances and Results

First-come, First-placed Deeply entrenched in the marketing of on-campus

housing is the first-come, first-placed basis for assigning rooms. Besides being intu-
itively easy to understand and explain to students and parents, it encourages students
to get their paperwork in early. Although originally intended for office use only,
these ‘lottery numbers™ are now an open secret, and students become very upset
upon learning that someone behind them in line received their requested dorm but
they didn’t! Students who have higher seniority, that is, more consecutive semesters
in the dorms, also get a significant advantage. Student priority order is discussed

further in Section 2.2.1.

Preference Priority FEach year students are surveyed to learn their feelings re-
garding the importance of hall choice over roommate requests. The hall usually wins
over a friend, and Ranville adjusts the rules attempting to reflect this perception the
following year. It becomes the delayed broad brush-stroke with the highest penal-
ty. Many fine-brush strokes are also involved to minimize age differences, separate
students with conflicting music tastes and study habits, with smaller impact on the

overall score. The challenge of setting these values is discussed in Section 4.1.1.

Gender Designating rooms to specific genders involves subtle issues and so are
not done automatically. Room gender designations are arranged to avoid conflicts
and preserve fairness. For example, a dorm arranged as three floor buildings with
two apartments per floor accessed by outdoor stairs is given a ‘checkerboard’ gender
designation to prevent one gender from taking over a building or blocking passage

to the top floors.* Such room attributes outweigh student seniority considerations.

3Known internally as lottery number, it is the number stamped on the student’s appli-
cation when their deposit is paid. New and returning students have separate accumulators
— lower is better.

4 Allison, S. Personal communication, Spring 1999.

Chapter 1. Choices, Chances and Results

Smoking Trends With the increasing trend of students not smoking, and object-
ing to traces of tobacco odor in their room, entire buildings have been designated
non-smoking, leaving fewer rooms where the smoking attribute is determined by its
occupants. Students can stress their objections to smoke on their application forms,

however, this information has yet to be leveraged.

Room Type A distinction between room capacity and room type exists. For
example, depending upon enrollment levels, bunk beds may temporarily be installed
in some rooms making three to a double room possible, or a bed may be removed

creating a ‘doubles-as-singles’ option.

Interdependent constraints — hall preferences, roommate requests, room at-
tributes, adjoining suites, cancellations, turn-in order, multiple runs and upgrades
— makes automatic dorm room assignments a difficult global optimization problem.
The deterministic approach apparently used by HMS suffers from myopia — there
may be thirty wonderful choices for the first student, but HMS’s decision ignores the
effect on the hundreth student who has fewer possible good alternatives, and so forth
down the line. Simulated annealing’s holistic approach seemed better-suited to the
task of discovering an overall better set of assignments without hurting those who

benefit from seniority. Initially, our goal was to see if that was true.

1.2 Chances: The Simulated Annealing Solution

Starting with a seed of chance, DAO considers millions of random swaps. Using
a simulated annealing algorithm, better, worse and lateral moves are considered
to avoid possible entrapments and uncover better overall configurations. The DAO
usually produces a different result each time it is run — therefore, we say, the solution

is based on chance.

Chapter 1. Choices, Chances and Results

1.2.1 Introduction to Annealing and Simulated Annealing

Physical annealing is a three stage process that has been known and used for shaping
metals since about 5000 B.C. [Enc0O0b]. Any annealing process consists of three
stages: heating to the desired temperature, holding at that temperature, and cooling,
usually to room temperature [Ame]. Glass, crystals [Enc00a], and other materials

are also annealed to render them less brittle and more workable [Col94].

Sequences of times and temperatures, called ‘annealing’ or ‘cooling’ schedules,
are critical in two ways: If the rate of the temperature change between the outside
and inside of the piece is too great, temperature gradients and internal stresses may
be induced that may lead to warping or cracking. Also, the actual annealing time

must be long enough to allow for any necessary transformations to take place [Ame].

Using Monte Carlo sampling techniques, the physical annealing process has been
modeled successfully by computer simulation methods. The analogy between a phys-
ical many-particle system and a combinatorial optimization problem is based on the

following equivalences [AKvL97]:

e Solutions in a combinatorial optimization problem are equivalent to states of
a physical system.

e The cost of a solution is equivalent to the energy of a state.

e A control parameter plays the role of temperature, such that: At large values,
changes in energy are accepted; as it is reduced, only decreases or smaller
increases are accepted, and as it approaches zero, no increases are accepted at
all. Furthermore, there is no limitation on the acceptable size of an energy
increase, a characteristic feature of simulated annealing.

The Metropolis algorithm for Monte Carlo is the grandfather of simulated an-
nealing algorithms, proposed in 1953 in [MRR53]. Its significance is highlighted by

its selection as the top algorithm with the greatest influence on the development of

Chapter 1. Choices, Chances and Results

science and engineering in the 20"* Century for offering “an efficient way to stumble

towards answers to problems too complicated to solve exactly” [DS00].

Kirkpatrick and Gelatt first tested simulated annealing on the travelling sales-
man problem, finding locally optimal solutions for N up to 6000 sites [KGV83]. At
that time the exact solution had been obtained for 318 sites. Annealing was also
used to optimize the design of complex integrated circuits by arranging hundreds
of thousands of circuit elements to minimize chip space requirements and to reduce

interference among their connecting wires [KGV83|.

For certain NP-hard problems, where poor local extrema abound but are not far
from good local extrema, the simulated annealing technique outperforms straight-

forward iterative improvement, at the cost of much longer running times [MS91].

It has been applied to many problems, ranging from the practical to theoretical
[AKvLO7]. A related, yet more complex, example is academic course scheduling
at Syracuse University [EFC98]. Other NP applications include signal and image
processing, task allocation, network design, graph coloring and partitioning [JAM91,

JAMB89], and molecular analysis.

Four ingredients are needed to apply simulated annealing to new problems [KGV83]:

A concise description of the system configuration;

A random generator of moves or rearrangements of the elements;

A quantitative objective function representing all the trade-offs;
e An annealing schedule of temperatures and length of times by which the system

evolves.

Annealing generally begins by reading in an existing solution to the problem

or generating a random solution. Once the starting temperature and termination

Chapter 1. Choices, Chances and Results

criterion have been established (perhaps by examining a large number of solutions)
the actual annealing begins. At each iteration, the current solution is randomly
perturbed to create a new solution (this step is often referred to as a move). The
change in cost AC from the previous to the new state is calculated, and the move is

accepted with probability
1

1+ eAC/T

its Boltzmann probability factor (or sigmoid), where T is temperature.

1 T T
\ f Temperatures
N T=.1
N T=1
———————— T=10

o
o

Probability of Accepting a Move
o
N

0.2

1
-10 -5 0 5 10
Changes (negative improves) in Objective Function

Figure 1.1: Boltzmann Probability Factor (the heart of annealing)

The probabilities for different changes in cost at different temperatures intersect

at the center point (0,.5) as shown in Figure 1.1, where there’s a 50-50 chance of

Chapter 1. Choices, Chances and Results

accepting a move when no change in score occurs whatever the temperature. When
the temperature is high, the solid 7" = 100 line shows there is almost always a 50-50
chance of accepting a move regardless of the cost. As the temperature decreases, the
bold T =1 line approaches a probability of one as the change in cost decreases and
a probability of zero as the change in cost increases, showing we are very likely to

take improving moves and less likely to take deteriorating moves.

In general, temperature is used to scale differences in height of the landscape.
Raising the temperature flattens a rugged landscape by a greater willingness to
accept worse moves. Small irregularities on a smooth landscape are accentuated by
lowering the temperature and accepting mostly improving moves. Landscapes are

depicted graphically in Chapter 2.

The inherent problem with only accepting better moves, hillclimbing, is that we
might get stuck in a valley that can’t be escaped by taking downhill moves. The
willingness to move uphill to a worse position gives simulated annealing the advantage

of possibly escaping from local minima in hope of finding a deeper valley farther away.

If the move is not accepted, the previous state is restored. After a certain number
of moves, the temperature is decreased — thus decreasing the probability of accepting
uphill moves. When no downhill (better) moves exist in the neighborhood, we have
reached a local minimum. This does not imply we’ve reached a global minimum

solution, however.

Finally, the algorithm terminates when some specified stopping criterion is met

— e.g., when no improvement has been found for some number of moves.

One challenge with annealing is the determination of the parameters controlling

the execution of the algorithm [Lee94]. It is still an art [AKvL97].

10

Chapter 1. Choices, Chances and Results
1.2.2 Optimizing Dorm Assignments

The Dorm Assignment problem can readily be structured for simulated annealing:

The dormitory system can be described concisely in terms of students and beds;

The students can be rearranged in different beds randomly;

An objective function based on student preferences can be devised;

Through trial and error, and a bit of luck, an effective annealing schedule can
be found.

The existing HMS system provides us a convenient description of the problem
domain: The beds and the students (Figure 1.2). The student data is entered into
the system from the application forms manually, and more recently through a trial

scanning system.

In the DAO, each rearrangement attempt, or mowe, is based on switching a ran-
domly chosen student with the occupant of a randomly chosen bed (though it may
be empty).> Available beds are selected directly instead of first selecting a room
and then a bed, eliminating any dependency upon room capacity. Virtual beds,
though nonexistent in physical reality, are offered as possible temporary alternatives
— amounting to a kind of waiting list.® Students who have already been assigned a
room by the Housing Reservations staff or a previous run of the DAO, are considered
unmoveable and are never selected, but their preferences continue to be considered

in the placement process of their roommates.

The objective (cost) function is a sum of per-student error terms. Used to cal-

culate the overall cost, Housing chooses the coefficients for these terms — an art

5QOther notions of a ‘move’ could be defined (e.g. a group together, or splitting a suite).
6The number of virtual beds is a configurable option with a minimum of one room (six
beds) per gender.

11

Chapter 1. Choices, Chances and Results

in itself. As the primary repository of preference and policy choices, this objective

function will be the focus of Chapter 2.

To minimize the cost function, five annealing schedules: Algorithmic, table-
driven, and three adaptive algorithms, each with its own criteria for reducing tem-
perature and phase and determining completion, were devised and studied for this
project. To use simulated annealing effectively to sample the search space efficiently,

a good cooling schedule is crucial [EFC98] — this is the focus of Chapter 3.

Students

application charges, :

: forms assignments :

bed attributes s

: A & student prefs _

‘5 Housing Management |: Dorm Assignment

‘@) System (HMS) e Optimizer (DAO)

‘3 : recommended L

‘o J assignments

‘a4 queries, : upgrades,

: § updates : queries

5

=]

HeN

S

8

S DORM VIEW

8

: reports visualization upgrades, reports
: queries

Housing Reservations Staff

Figure 1.2: System Overview

12

Chapter 1. Choices, Chances and Results

1.3 Results: Fall 1998 — Fall 2000

The placement of students by this stochastic technique has been the alternative of

choice at UNM since Fall 1999. We summarize our results here by semester:

Fall 1998 Tests comparing the DAO and HMS showed promising results.

Spring 1999 Our approach was presented to Housing Management, gaining ap-

proval for a side-by-side trial run for the upcoming fall semester.

Fall 1999 First production run was successful achieving 87.3% student satisfaction
— one of three top dorm choices granted. Unfortunately for the science, the
HMS comparison run was not performed due to time constraints, however,

many valuable lessons were learned along the way.

Spring 2000 Enhancements were made to the DAO to accommodate aspects unique
to the spring semester — the majority of the students stay in their same rooms

with only a few hundred students newly assigned.

Fall 2000 The automated upgrading facility was available for the first time.
Dorm View, a graphical user interface (GUI) we developed to give the Housing
Reservations user the ability to: Visualize assignment results using colored
lens for different student and room attributes; customize reports based on
halls displayed; and move or switch students with more complete knowledge

surrounding the change, was used for the first time (Figure 4.1 on page 54).

Production and experimental uses of the DAO have provided many insights into
the dorm assignment problem and the simulated annealing solution. These results

are covered in Chapter 4.

Chapter 5 concludes with some ideas for future work, from the nearer-term to

the speculative.

13

Chapter 2

Choices: The Dorm Assignment

Problem

Without trying all 2,000! possible combinations of dorm room assignments, we would
like to find the combination where everyone is the happiest. To do this we need a way
to quantify how bad a configuration is, that is, how unhappy the students are likely
to be. We define an objective function, f, to capture as much knowledge as possible
regarding preferences and policy choices. Our goal is to find the set of assignments

with the smallest value of f, thereby minimizing mismatches.

2.1 The Objective Function

The Objective Function for this application is all the contraints used to match
students and dorm rooms. The domain is all the students in beds. A single data
point, or state, is the assignment of each student to a bed. f maps from a state to
a non-negative integer score, where a zero score (if you could get there) would be

‘perfect’ with no errors, and everything else is worse. Starting at some state, we try

14

Chapter 2. Choices: The Dorm Assignment Problem

to improve it by moving to nearby states. By switching a randomly chosen student
with the occupant of a randomly chosen bed, while all else stays constant, we can
reach a nearby state. Each state has some four million possible neighbors, since any
of almost 2,000 students can be moved to any of 2,000 beds. To better illustrate
the concepts of neighborhood and landscape, we present graphs showing a single data

point from both random and optimized configurations.

2.1.1 Neighborhood Landscapes

Changes in Cost (millions)
(negative is better)

2

15
1 +
05
0 =
05
1k
-15
2+
25

1400

1200

200 600 Available Beds
400 in Alpha Dorm Order

400

Most-senior to Newest 9
Students 1400

m ’_‘ 1 ’_‘ =t H =t ’_‘ 1 ’_‘ m
6 -4 2 0 2 4 6
Changes in Cost (log10)

Neighbors (10k)
oORrNWAUO
1 1T T 7T

Figure 2.1: Neighborhood Landscape at a Random Point

15

Chapter 2. Choices: The Dorm Assignment Problem

The landscape of the neighborhood of a single random point is represented in
Figure 2.1.1 The value of the objective function was 520 million, achieving only 37%
satisfaction, leaving 803 out of 1267 students nowhere they wanted to be, and only
202 students receiving a perfect score. The histogram shows the nearly symmetric
distribution of the cost changes of this neighborhood. The significantly better moves
are below the cloud line (negative change in cost), while those above the cloud line

are worse.

Changes in Cost (millions)
(negative is better)

2 ¢ + w7
15 F .., ty < e
1 F Al 4@## + o s
0.5 —w + I
0 # e
-05 + Zoe' o2
1 "
15

200

400 600 Available Beds

600 800 400 in Alpha Dorm Order

Most-senior to Newest 100 9
Students 1400

200

Figure 2.2: Neighborhood Landscape of the Most-senior and Least-senior Students
at a Random Point

In Figure 2.2 we isolate the most senior student, who we’ll call ‘Al’ (at position
10), a resident for eleven consecutive semesters, and the least senior student, ‘Zoé’
(at position 1267), a first time resident, at the single random data point to see how

they would fare in any other available bed. As it happens, Al objects to smoke

1To reduce clutter, an arbitrary 25% of the histogram data is plotted.

16

Chapter 2. Choices: The Dorm Assignment Problem

and requested the apartment-style dorm for all three choices, with one roommate
request, and a special request to be in the graduate area; Zoé is a smoker with no
hall preferences or roommate requests. They were both randomly placed in virtual

beds.

The best place for Al is the apartment-style dorm (near bed 700) which matches
the special living option he requested and switches with someone who has no desire
to be there. Zoé improves her score pretty much anywhere we place her; the worst
places for her are non-smoking apartment-style rooms with the non-smoking special

living option (near bed 1000).

Changes in Cost (millions)
(negative is better)

2.5
2
1.5
1
0.5
0
1400
1200
0 200
400 600 Available Beds
600 555 400 in Alpha Dorm Order
f 1000 200
Most-senior to Newest 0
Students 1400
< 25 T T T T T T T
S 20 g
g 15| .
£l]
g 0 1 1 1 -] 1 — m 1
-6 -4 -2 0 2 4 6

Changes in Cost (log10)

Figure 2.3: Neighborhood Landscape at a Single (local optimum) Point

17

Chapter 2. Choices: The Dorm Assignment Problem

Using the same constraint values and data as in the random point, after six rounds
taking approximately two hours, the global score declined to 45 million, achieving
97% satisfaction with only 32 out of 1267 students nowhere they wanted to be, and
697 students receiving a perfect score. The result of this complete run, as we can see
in Figure 2.3, is a local minimum — there are no better single moves (below zero)

for any student.

Changes in Cost (millions) $
negative is better
(neg) %i
4
4
3 - #j‘f‘f L.
+H + ik
25 k¥ 0 e ..
+
2 + =+ a N +
& M ;5}
15 +ﬁ ﬁ‘?
+ ap
fow 4
0.5

200

400 600 Available Beds

400 in Alpha Dorm Order

Most-senior to Newest 9
Students 1400

Figure 2.4: Neighborhood Landscape of the Most-senior and Least-senior Students
at an Optimized Point

Two slices of the neighborhood landscape for our students, Al and Zoé, at the
optimized point can be seen in Figure 2.4. Al got his first hall choice in the graduate
area, but didn’t get his roommate request because it was not a reciprocal request and
the special grad area wasn’t mutually specified. Zoé, who was so easy to please, got a
perfect score. Her set of possible alternative moves exhibits the end of a phenomenon

that looks like a ‘hole’ in the cloud.

18

Chapter 2. Choices: The Dorm Assignment Problem

Figure 2.5 pinpoints the start of this obvious ‘hole’ between the last second
semester resident, Mary (at position 718), and the first new student (at position
721) Nick. Mary got her second hall choice, but not her requested roommate, a
more senior resident who wanted and got into the apartment-style dorm. Nick,
assigned to his first hall choice with the scholar’s wing special option and no re-
quested roommates, has a perfect score. Attempting to move him into any of the
coveted apartment-style dorms (beds 673 through 1161) severely hurts his grade with

increased costs — this begins the vacant region.

Changes in Cost (millions)
(negative is better)

3 r +
N

2o r : t{ v
2r * t+;§* - +;r$ﬁ#
15 F 4 fr

++§#F ey
1 -

P 5,

0.5
0

600 Available Beds
in Alpha Dorm Order

Least-senior to First-new Students 0 200

Figure 2.5: Neighborhood Landscape of the Least-senior and First-new Students at
an Optimized Point

The Objective Function has terms that include dependencies between students,
not just students and beds independently. As we’ve seen with Al’s assignment, a
student requests other students as roommates, and depending upon the locations of

the requested roommates there may be a ‘mismatch’ or ‘error’.

19

Chapter 2. Choices: The Dorm Assignment Problem

2.1.2 Constraint Costs

The basic structure of the DAQO’s objective function iterates over all the students and

sums up their ‘unhappinesses’.

There are two main types of constraints in the DAO’s objective function: Room-
student and student-consensus related errors (Table 2.1). Room-student constraints
take student and room attributes into account. For example, a room-student mis-
match occurs when a student’s first choice hall does not match the hall of their
room. Student-consensus constraints are concerned only with the students in the
room (or suite). Student-consensus errors occur when the occupants of the room do
not agree, for example, a student who prefers classical music is in the same room as
someone who objects to the classics. Student-consensus constraints can also be used

to determine the attribute of the room, such as non-smoking and gender?.

ROOM-STUDENT Unweighted (RS) || STUDENT-CONSENSUS Unweighted (SC) |

bed gender
smoke smoke
underage music
different hall study late
different bed age difference
worse hall fill (partial & triple)
better bed first timer
ROOM-STUDENT Weighted (RSw) || STUDENT-CONSENSUS Weighted (SCw)
| dorm preferences | group (roommates) ‘

Table 2.1: Constraint Classifications

Additionally, a compiled-in table determines whether constraints are weighted by
students’ seniority and reservation order. Priority increases the constraint penalty

if there is a problem, thereby encouraging the system to find a better solution for

2Gender consensus applies to undesignated male or female rooms. The gender attribute
is generally predetermined at UNM (see page 4).

20

Chapter 2. Choices: The Dorm Assignment Problem

the individual and the whole. ‘Dorm Preferences’ and ‘Roommate Requests’ are
the weighted constraints in the DAO. A closer look into weighted and unweighted

constraints follows in Section 2.2.1.

The Objective Function is the sum of all per-student constraint violations, weight-
ed and unweighted, as they apply to each student in a bed, given all the other students
in their beds. Housing sets the penalties to indicate the relative importance of the
errors (e.g. no bed at all is much worse than a older roommate). The grades and
the error breakdowns are kept on both individual and overall bases for reporting

purposes.

The Objective Function (details in Appendix B), f, is computed as:

fle) = i (slw(s) > wvjRSerrj(e,s) + Y ijSerrj(e,s)) +

s=1 jeRSw jeRS

iz (slw(s) > v;SCerri(e,s,r) + Y v;SCerr;(e, s,¢)>

r=1s=1 jeSCw jeSC

where e is the state, m is the number of students, n is the number of rooms, ¢ is
the number of students in a room, slw is the student’s calculated seniority-lottery-
weight3, v is the user-specified value of the constraint coefficient, RSw is the set
of weighted room-student constraints, RS is the set of unweighted room-student
constraints, RSerr is a room-student error, SCw is the set of weighted student-
consensus constraints, SC' is the set of unweighted student-consensus constraints,

and SCerr is a student-consensus error.

The overall cost (the global grade or score) for all the students, computed initially

and as sanity checks, is linear in the number of students. Most of the time, however,

3The slw is the number of consecutive semesters as a resident in the dorms multiplied
by the seniority weight, plus the lottery benefit (see page 25).

21

Chapter 2. Choices: The Dorm Assignment Problem

we can update it incrementally in constant time by adding the change in cost resulting

from a single move to the global grade.* Our goal is to minimize the global grade.

Sometimes the Whole Must Suffer

A first time student for Fall 2000, seventh in line by lottery number, had
three different hall choices, the second of which was the less popular all-
female hall. The DAO placed her in her second choice for the overall ben-
efit of those students who would not be happy with anything less than this
student’s first choice. Regardless, she was manually upgraded to her first
choice because she was at the head of the line.

Seniority weights, constraint error values, and other configurable parameters
assigned by Housing, are read from an options file as the program begins, and are
used to compute the overall cost of the objective function. As management poli-
cy changes, these choices can be amended without recompiling the DAO. However,
choosing values accurately to reflect these policies becomes the real challenge, as

shown in Section 4.1.1 (page 43).

2.1.3 Modifying the Objective Function

The DAO objective function, written in C, requires a programmer and recompilation
to modify it, unlike the HMS rules. However, we provide an understandable way

for Housing to adjust the grading function: Seniority weights, constraint coefficients,

“Worthy of note is the significance of the maximum number of beds in a room (a
constant) to the worst case complexity of the group, gender, and smoking student-consensus
constraints across suites. For an intermediate grade calculation, the complexity in the
worst case, based on consensus_across_suites = # rooms_in_suite * # students_in_room *
roommate_requests_per_ student * # rooms_in_suite * mazimum_beds_in_room, is O(b°),
where b is the maximum number of beds in a room. Since MAX_BEDS is a constant, and a
constant raised to a power is constant, the complexity is still O(1). At uNM, the maximum
number of beds per room, found in the apartment-style dorm, is six. Furthermore, suites

comprise approximately 46% of the total bed space.

22

Chapter 2. Choices: The Dorm Assignment Problem

and other configurable parameters. Housing also designates the finality of a student’s
assignment, and room attributes (e.g. gender, smoking and blocked), all of which

effect the quality of assignments.

Changing the Objective Function by adding or modifying constraints is an im-

portant topic with many subtleties. Constraints must:

e reflect the real-world;
e apply to the entire system equally;
e report errors on an individual basis;

e support gradations where possible, rather than all-or-none, to help produce a
smoother landscape;

e be linear time since they are checked in the inner most loop.

These design choices are illustrated in the following examples:

Reflect the Real World To reduce manual consolidation — combining single
students assigned to double rooms at the start of fall semester, the partial_fill con-
straint gives each student in the room, regardless of the type of room, the minimum
of the empty and occupied beds. When occupancy is at the room’s capacity there is

no problem.

Apply Uniformly The apartment-style dorms can be configured as a room of six
beds or as a suite of six adjoining single rooms. The roommate constraint generally
applies across adjoining rooms because we want groups to be together across the
suite situations as well as within rooms. Non-smoking consensus does not generally
apply across adjoining rooms, however, a shared living area keeps smoking an issue in
these dorms regardless of their interpreted configuration. The music, study late and

age difference errors do not effect suites — the real world view says these constraints

23

Chapter 2. Choices: The Dorm Assignment Problem

are less critical when students can easily shut their doors, but they would matter in
a multi-bed room. All these constraints apply uniformly, whether a consensus of six

or the trivial case of one.

Smoother Landscapes To keep the landscape smoother, we want the constraint
functions to return more gradual results. For example, spring semester we added a
constraint to deter the system from placing new students with returning students,
as suggested by Area Coordinator Rob Burford, who often saw this happen with
subsequent room changes. The first_timer constraint returns the difference in the
consecutive semesters between first-timers and old-timers. The more senior the old-
timers, the worse the grade for the first-timers — this is more desireable than just
counting the old-timers for example, because it is less discrete. A relatively small

coefficient sufficed for this constraint to have the desired effect.

Linear Time The age_difference constraint works similarly, returning the maxi-
mum difference in ages beyond the configured acceptable years apart. To find the
largest unacceptable age difference, instead of comparing each student in the room
with every other student in the room, we find and compare just the oldest and the

youngest, requiring only linear time.

2.2 Choices in Policy

The Objective function is shaped by the priorities set forth by Housing Management
policy. As described in Section 1.1.2, the First-come, First-placed and Early Student

Notification choices have a particular impact on the problem and the results.

24

Chapter 2. Choices: The Dorm Assignment Problem

2.2.1 Inflationary Costs

Although position in line, hence lottery number, has little to do with making good
matches, we accommodate this traditional practice by allowing Housing to adjust the
lottery number coefficient. We ask Housing to consider how important this chance
order is compared to residence seniority, such that the first person in line gains some
fixed percentage of a semester’s seniority benefit, the last person has no benefit, and

all the others are scaled in between.

A non-weighted constraint has the value specified by the user, such that the more
important the effect, the greater its value. A weighted constraint has a base value
specified by the user, which is multiplied by the student’s calculated seniority-lottery-
weight (slw) to determine its overall value. To provide greater granularity in lottery

we use a seniority weight close to the number of students.?

The greater the seniority weight, the greater the non-weighted constraints must be
to have the desired effect. To accommodate these inflationary costs, we converted the
GRADE in DAO versions v0.6x to an unsigned integer for a global score maximum of
approximately 4.2 billion.® Weighted contraint values must still be relatively small.
Negative values do not exist in the unsigned world, and limit us in two ways: We are
unable to support negative constraint values (or credits), and the hardware cannot
help us detect overflows. An example of the former is given below. To compensate
for the latter, we systematically use software overflow checking whenever we adjust
the global grade. If an overflow occurs, the run is aborted, and constraint values

must be reduced by the user.

SDoubling the seniority weight to 2000 produced more defendable results, according to

Ranville’s analysis in early Fall 2000 tests.
6Tn limits.h, uLONG_MAX = 4,294,967,295

25

Chapter 2. Choices: The Dorm Assignment Problem

A ‘Good’ Constraint

Ranville asked if we could assign the larger rooms in the apartment-style
dorm to the more senior students. Since we do not support negative con-
straint values, we cannot give ‘bonuses’ when senior students are in these
‘better beds’, so instead we give an error to all other cases, including stu-
dents in all the other dorms. In effect, we are raising the sea-level of our
landscape. This error destroys the majority of perfect zero grades because it
is not really an error — it’s a credit!

Applying the error just to the apartment-style dorm that actually has the
better beds, though initially plausible, results in the DAQO choosing to move
students out of the apartment-style dorm. Applying the constraint globally
avoids that faulty behavior.

To further conserve error bandwidth, in DAO version v0.93, we converted gender
into a ‘hard constraint’, guaranteeing the randomly-chosen bed will always be the

appropriate gender, without requiring a large constraint weight to ensure it.

2.2.2 Multiple Assignment Runs

The Management policy of early notification to the students, requiring multiple as-
signment runs with incomplete information, has consequences to the overall process
and results. Tests have shown the overall score suffers after submitting the returning
and new students separately.” Getting student preferences into the first assignment
run is a major priority — this run has the maximum degrees of freedom for making

good matches.

Notified only of their hall, however, students assigned a room early may still be
moved. We are free to change their bed within the same hall, and possibly their hall
if a higher choice becomes available. Were anybody to be moved to a worse hall —

not one of the student’s requested halls, or a lower ranked available hall — the whole

"Simulated Annealing in Dorm Assignments, CS451 Project, October 1998.

26

Chapter 2. Choices: The Dorm Assignment Problem

run would be unusable. To try to prevent this from happening, automatic upgrading

is implemented as a constraint with an extremely large ‘worse hall’ penalty.

Preliminary tests show that secondary runs with automatic upgrading can help to
compensate for the disadvantage of doing multiple runs, but still they do not compete
with the quality of results from a single larger run. This upgrading feature has

yet to be used in production, as discussed in Section 4.2.4 (page 52).

2.3 Choices in the Data

The student’s primary contribution to the assignment process is filling out and turn-
ing in the Residency Application form. Students who remain dorm residents over
their college career increase their chances of getting the room they want. Keeping the
same room is an overriding choice — essentially a hard constraint for DAO. Students
also improve their chances of getting their choices by reserving a place in line early.
To be placed with a friend in the same room, roommate requests should be mutual

and compatible.

Baffled Roommates

Baffled as to why two friends, less than a month apart in age, were not placed
together after requesting each other, the same halls, same music preference,
same study habits, and turning in their applications at the same time, the
Area Coordinator discovered one was a smoker and the other objected to
smoke. Clearly, the smoking error (60,000) vastly outweighed the incomplete
group error (4,588) for these two first timers. A smoke compatibility veri-
fication, added in version v1.15, revealed over a hundred roommate requests
with the same problem. Reported as exceptions, Ranwville is now alerted to
such conflicting data. Understanding why this happened, future orientations
will stress the importance of compatible choices when requesting a roommate.

27

Chapter 2. Choices: The Dorm Assignment Problem

Since constraints are cumulative, the more choices a student makes, the better
their assignment tends to be because they can produce larger errors on mismatches.
We found cases where a student who requested the same hall for all three preferences
had a better chance of success than a more senior student who had only filled in their
first choice. We surmised a similar phenomenon existed with roommate requests — a
student with five roommate requests was more often satisfied than the student with
only one best friend. Attempting to level the playing field, we added configurable
options to duplicate students’ hall choices and roommate requests in DAO version
v0.45. When the roommate duplication option was tried in early Fall 2000 tests,
Ranville noticed students with mate requests and less seniority were given preference
over students with more seniority and no roommate requests. Roommate duplication

was not used.

Multiple roommate requests also come into play in a new way as adjoining rooms
are now considered when placing students. For the student who chooses a double
room, the bestfriend option tries to place their first valid roommate listed in the same

room rather than split them across a suite.

Spending Choices Foolishly

In Fall 2000, we saw first-time residents requesting the prize apartment-style
single rooms (about 28% of the total bed space) for their first and second
choices and the other popular hall with adjoining rooms (about 18% of the
total bed space) as their third choice, get a single in an unrequested dorm;
students behind them in line who requesting the adjoining double rooms
as their first and second choices and the less desireable hall for their last
choice actually got their first choice. The person who gets their paperwork
in early should at least get their third choice, according to Ranville, even
if they choose to spend their first choices foolishly, at the expense of the
wiser student behind them. Rather than leaving some of these students’ bad
choices to chance, Ranville fixed their requests to get them into the hall they
‘deserved’.

28

Chapter 2. Choices: The Dorm Assignment Problem

Two conflicting important constraints could hurt the student’s chances of getting
into their requested area. For example, students who request the apartment-style
dorms should also request a single room so the two choices do not conflict. Sometimes
students fail to indicate they are a non-smoker while requesting a non-smoking special
living option (see table on page 56). Occasionally students designate the same music
type for both their preference and objection, or request a roommate of the opposite
gender — usually a data entry problem. All these exceptions are reported to and

remedied by the Housing Reservations staff before assignment processes are run.

29

Chapter 3

Chances: The Simulated

Annealing Solution

The simulated annealing technique used in the DAO was regularly able to find a
local minimum within 20 million attempts switching students and beds at random
— a vanishingly small sample compared to the 2000 factorial possible combinations
of dorm room assignments. At the same time, compared to the HMS system, DAO

reduced the processing time from days to hours.

3.1 Simulated Annealing Schedules

Simulated Annealing (SA) has advantages and disadvantages compared to other glob-
al optimization techniques, such as genetic algorithms, tabu search, and neural net-
works. Among its advantages are the relative ease of implementation and the ability
to provide reasonably good solutions for many combinatorial problems. Though a
robust technique, its drawbacks include the need for a great deal of computer time

for many runs and carefully chosen tunable parameters [EFC98|.

30

Chapter 3. Chances: The Simulated Annealing Solution

With the existence of uphill moves, comes the possibility of cycles and random
walks, both which stymie SA and are addressed in Section 4.1.6 (page 46). Like
hillclimbers, simulated annealing can fall into a local minima far from the global

optimum solution (like premature crystalization) [Rib].

Without attempting to provide a comprehensive comparison of global optimiza-
tion techniques, we present our approach and findings within the specific problem

domain of improving dorm room assignments, using simulated annealing.

Given a neighborhood structure, simulated annealing can be viewed as an algo-

rithm that continuously attempts to transform the current configuration into one of

its neighbors [vLLA87].

Simulated annealing, a Monte Carlo method that can be modeled mathematically
using the theory of finite Markov chains [AKvL97]. By definition, a Markov chain
is a sequence of trials, where the probability of the outcome of a given trial depends
only on the outcome of the previous trial. In the case of SA, a trial corresponds to
a move, and the set of outcomes is given by a finite set of neighboring states. Each
move depends only on the outcome of the previous attempt, so the concept of Markov
chains applies. Since the number of the trial does not affect the probabilities, it is

considered homogenous [AKvLIT].

To govern the convergence of the algorithm, a set of parameters, known as a
cooling schedule, are specified by:

an initial value of the control parameter (i.e. temperature)

e a decrement function for lowering the value of the control parameter

a final value of the control parameter specified by a stop criterion

a finite length of each homgeneous Markov chain.

Determining these parameters is one challenge with annealing. There is much

research on the topic, dealing mostly with heuristic schedules [Pic87, BGNZ96,

31

Chapter 3. Chances: The Simulated Annealing Solution

AKvL97]. There are two main categories of heuristic schedules: Static and dynamic.
In a static cooling schedule, the parameters are fixed and cannot be changed during
the execution of the algorithm. With a dynamic cooling schedule the parameters are
adaptively changed during the execution. The Mathematical Optimization chapter
of the Computer Science Education Project [CSE96] provides an introduction to two

simple static cooling schedules:

The simplest and most common temperature decrement rule is:
Ty+1 = T}, where « is a constant close to, but smaller than, 1. This
exponential cooling scheme (ECS) was first proposed by Kirkpatrick et
al. [KGV82] with o = .95.

Randelman and Grest [RG86] compared this strategy with a linear
cooling scheme (LCS) in which 7" is reduced every L trials [while avoiding
negative temperatures|: Ty = Ty + AT. They found the reductions
achieved using the two schemes to be comparable, and also noted that
the final value of [the objective function] f was, in general, improved with
slower cooling rates, at the expense, of course, of greater computational
effort. Finally, they observed that the algorithm performance depended
more on the cooling rate, AT /L, than on the individual values of AT
and L.

Some general guidelines exist when choosing an annealing schedule, for instance,
there is a trade-off between large decrements of the control parameter (7") and small
Markov chain lengths (L) — usually small decrements of T, or a ceiling for L,
polynomial in the problem size, are chosen to avoid long chains. When the Markov
chain length is fixed, it may be related to the size of the neighborhoods in the problem
instance. Apparently, when a sufficently long schedule is used, simulated annealing

replaces iterative improvement as the optimal schedule [vLA87, AKvL97].

Researchers have proposed more elaborate, mostly adaptive, annealing sched-
ules, using statistical measures to modify the control parameters. Unexpectedly,
non-monotonic schedules have been observed as optimal in some situations [vLA87,

AKvL97].

32

Chapter 3. Chances: The Simulated Annealing Solution

3.2 Dorm Assignments: Five Cooling Schedules

Since there seemed to be no basis for deriving a single optimal schedule, we developed
five annealing schedules: Two static types, one algorithmic and one table-driven; and
three dynamic adaptive algorithms, each with its own criteria for reducing temper-
ature and phase, and determining completion. An algorithm options file facilitates

experimentation with the SA parameters.

We began our study in DAO version v0.09 with an ECS variant — starting with
a temperature and a phase, after a phase worth of attempts, the temperature is
decreased by a configurable factor and the length of the phase doubled: Ty, = Ty,
where o = .20 by default. The process stops when the temperature reaches a config-
urable value. Running at high temperatures for a short time and at lower tempera-
tures for longer times produced excellent results at the expense of longer than desired
elapsed times — taking several hours for a single round. This ‘cadillac’ algorithmic

schedule (denoted sa0) remains our baseline for comparison.

DAO version 0.10 introduced a table-driven version (sal) that disassociates the
phase and the temperature. Up to sixteen phase-temperature pairs are configurable
in the algorithm options file. The extreme flexbility of this table approach has
been useful in configuring various test situations, though challenging to refine for

production.

In search of easier-to-configure approaches, work on adaptive cooling began in
November, 1998 with DAO version v0.17, resulting in two approaches: An ‘attempt-
based’ scheme (sa2) and an ‘accept-based’ scheme (sa3). Most recently, as of version

v1.05, a ‘reheating’ scheme (sa4) has been developed as well.

The three adaptive versions, similar in structure, try to sense when to change

the temperature. In each, a running average of the most-recent one thousand cost

33

Chapter 3. Chances: The Simulated Annealing Solution

differences is kept, where an improved score has a negative cost difference. The
attempt-based scheme (sa2) uses all attempts, including the unaccepted attempts
that produce no change in the overall score, in the history buffer, while the accept-

based approaches (sa3 & sa4) keep only the accepted attempts.’

When a phase completes (initially, 2,000 attempted or accepted moves, by default)
and the temperature hasn’t changed for a configurable number of phases, temperature
is computed, based on comparing the standard deviation of the last 1,000 attempted

or accepted cost differences to the previous standard deviation. The schemes differ

as follows:
STD <=> LastSD sa2 sa3 sa4
less than cool TEMP by cool TEMP by the average
TEMP DIVISOR | TEMP _DIVISOR of STD
equal to cool TEMP by - and LastSD
TEMP DIVISOR by
greater than - - TEMP _DIVISOR

Inspired by the method of reheating as a function of cost (RFC) [EFC98|,
the adaptive scheme (sa4) uses the standard deviation of the cost changes as the
basis for the temperature. To compensate for the extreme variability of the stan-
dard deviations, we use the average of the standard deviations for the current and
previous phases and divide this average by TEMP_DIVISOR to maintain a downward

momentum.

!The choice of 1000 for the history buffer is questionable. Arguably, the size of the
history buffer should be adjusted to the phase, the number of students, the number of beds,
or both. With the accept-based approaches (sa3 & sa4), when the phase is 2000, there is
complete turn around in the 1000 cost changes used to calculate the standard deviation.
As the phase is reduced to less than 1000 in sa3, there is possible and probable overlap in
the history at these later decision points. With the attempt-based approach (sa2), all the
zero difference attempts are included in the history, providing little possibility of overlap.

34

Chapter 3. Chances: The Simulated Annealing Solution

The TEMP_DIVISOR is a configurable parameter set to ten by default.? A phase
count is used as a delay mechanism to determine the number of phases to wait before
trying another temperature adjustment.® If the temperature is changed, the phase

count starts over at zero, otherwise, each scheme does one of the following:

STD <=> LastSD sa2 sad sa4

less than - ‘ease’ phase test | incr phase-count
equal to - ‘ease’ phase test | incr phase-count
greater than incr phase-count | incr phase-count | incr phase-count
zero incr phase-count - -

The accept-based adaptive scheme (sa3) also considers ‘easing’ down the phase
length — reducing the number of accepts required before recomputing parameters
— to compensate for the increase in attempts required per accepted move at cooler
temperatures. This ‘ease’ test compares the percentage of improved grade differences
over the number of accepts to DECIDE_TO_EASE (set to 10 percent by default). If
the percentage is less, we reduce the phase length by the ACCEPT_REDUCER (in half
by default), so the next decision point is reached after fewer accepts and attempts.
The other accept-based schedule (sa4), uses a cost-sensitive temperature instead of
‘easing’, while the attempt-based approach (sa2) also increments the phase count

when the standard deviation is zero, as noted in the previous table.

The base case is a temperature less than ENDTEMP (.001 by default). Addi-
tionally, the phase value can terminate a round in the accept-based adaptive scheme

(sa3), and the table-driven scheme (sal).

2We found a value of five for the TEMP DIVISOR is better, though slower.

3The delay can be extended by setting the value of the DECIDE_TO_COOL configuration
option (zero by default) higher. We used a value of one, which gave us at least three phases
at each temperature.

35

Chapter 3. Chances: The Simulated Annealing Solution

The cooling schedule for each round, per batch, can be limited to one scheme, or
rotated among all the schemes beginning with any specified scheme. We keep track
of the best grade over a series of rounds until we fail to see a better grade within a
pre-configured number of rounds (NOBETTER).? At this point, we restore the best

state found and switch to a hillclimbing algorithm, as discussed in Section 4.3.7.

Figures 3.1 through 3.3 show the ‘Temperature vs Attempts’ graphs for sample
rounds that achieved the lowest overall results per scheme. The two static approaches
were the same each semester, while the three dynamic schedules varied. The smooth
curve, produced by sa0, took the greatest number of attempts each semester, while
the steepest graph with the fewest total attempts each semester was made by sal.
The stair-step curves made by the two adaptive schedules, show sa3 quit before sa2,
due to the ‘easing’ process. The reheating adaptive schedule, sa4, was non-monotonic

and stopped abruptly after nearly half the attempts taken by the cadillac.

Fall 2000 Fall 1999 Fall 1998
Test Actual | Test Actual | Test Actual

Perfect Score (%) || 53.7 48.3 | 45.6 32,5 | 49.3 227
Satisfaction (%) 94.6 940 | 924 87.3 |90.7 814

Table 3.1: Percentage Results from Sample and Actual Performances

Percentage indicators for each semester, from the best of our sample test rounds
along side the actual performances, are presented in Table 3.1. Since changes in
the objective function and data between DAO runs voids any score comparisons,
other indicators, such as ‘perfect score’, students without an error, and ‘satisfaction’,
percentage of students receiving one of their requested halls, as well as error counts,
may be used instead. Statistical test scores using the five cooling schedules are

compared in Section 4.3 (page 55).

4The number of rounds can be pre-determined with the LOOP_.CONTROL option.

36

Chapter 3. Chances: The Simulated Annealing Solution

1e+08

1e+06

10000

100

Temperature (log10)

0.0001

0.01

saIO (Grade 4|8.6m)
sal (Grade 49.1m)
sa2 (Grade 48.9m)

)

- sa3 (Grade 48.6m

sa4 (Grade 48.5m)

20 25 30
Attempts (millions)

35 40

45

Figure 3.1: Temperature vs Attempts by Scheme — Samples from Fall 2000

1e+08

1e+06

10000

100

Temperature (log10)

0.0001

1

0.01

saIO (Grade 8|8.1m)
sal (Grade 88.8m)
sa2 (Grade 88.4m)

)

- sa3 (Grade 88.5m

sa4 (Grade 88.0m)

20 25 30
Attempts (millions)

45

Figure 3.2: Temperature vs Attempts by Scheme — Samples from Fall 1999

1e+08

1e+06

10000

1

Temperature (log10)

0.0001

100

0.01

| |
sa0 (Grade 70.5m)
sal (Grade 71.1m)
sa2 (Grade 70.5m)
sa3 (Grade 70.5m)
sa4 (Grade 70.4m)

20 25 30
Attempts (millions)

35 40

45

Figure 3.3: Temperature vs Attempts by Scheme — Samples from Fall 1998

37

Chapter 3. Chances: The Simulated Annealing Solution

3.3 Guaranteed Local Minimum

Simulated annealing is guaranteed to find a global optimal solution, a result in
[AKvLI7]. Unfortunately, to get that guarantee requires an exponentially long cool-
ing schedule, and is therefore impractical. We’d settle for a local minimum, where no
better moves exist in the neighborhood, but reasonable length annealing schedules do
not even promise that! So in the DAO, we follow our five schemes with a deterministic

hillclimber that guarantees a local minimum at some additional expense.

This iterated next-descent hillclimbing algorithm [Ack87b] considers the students
one-by-one, either in arbitrary order from a random start (mr) or in seniority order
(m), depending on the configuration, and tries placing each student in every other
available bed looking for lower scores. Any bed switch that improves the overall
grade is accepted, and the student index is saved. From there we continue until we
reach the last student and last bed choice. If we had any improvements, we start
over until we have looped to the student index last changed. We end up with the
best grade such that there is no better state one move away — a local minimum.
The landscape of the results of a complete DAO run (page 17) shows no single move

improves the overall grade.

This minimization step can be configured to take place once on the best solution

ever seen, or after each round. The ramifications are discussed in Section 4.3.7.

3.4 Discussion: Adaptive Schedules

Why do our adaptive approaches seem to work well? What makes the standard devi-

ation of grade differences a good barometer for detecting apparent equilibrium?

38

Chapter 3. Chances: The Simulated Annealing Solution

From experience, we’ve seen that running briefly at high temperatures and longer
at lower temperatures produces good results, and this is sensible because, equilibrium
is approached more quickly at high temperatures. The overall structure of the
solution is shaped at high temperatures, while at low temperatures the fine details
of the solution are resolved [EFC98]. After many moves, approaching equilibrium,

we want to cool the temperature, making it more difficult to make a bad move.

The standard deviation indicates the spread in the grade changes of the moves
being attempted or accepted. Since one standard deviation includes about 60% of
all the grade changes, larger standard deviations indicate motion, while smaller ones
reflect similar grade changes, perhaps an indication of ‘settling’. In the attempt-based
scheme, which includes the zero grade differences in its history and calculations, a

zero standard deviation could also be an indication of settling.

The only cooling schedule that can potentially ‘reheat’ the temperature is sa4.
The temperature is directly proportional to the average standard deviations of the
changes in cost. Since the standard deviation can be larger or smaller, the tempera-
ture change is non-monotonic. Our approach is similar to the RFC method described
in [EFC98], “Reheating is done when the temperature drops below the phase tran-
sition (the point of maximum specific heat) and there has been no decrease in cost
for a specified number of iterations,... Reheating increases the temperature above
the phase transition to produce enough of a change in the configuration to allow
it to explore other minima when the temperature is again reduced.” Although we
borrowed the notion of a relationship between specific heat® and temperature, we use
the square root of the variance of cost changes as a basis for setting the temperature.
Due to the reheating possibilities, running times for sa4 are less predictable than

with the other two dynamic schemes as seen in Figures 3.1 through 3.3.

S“Specific heat is a measure of the variance of cost (or energy) values of states at a
given temperature” [EFC98].

39

Chapter 3. Chances: The Simulated Annealing Solution

3.5 Handling Ties

It is easy to overlook the question of what to do about ‘lateral’ ties, moves that
leave the score unchanged, yet change the state. The decision can have significant
consequences. Unexpectedly, it turns out that simulated annealing, the Metropolis
criterion, random lateral descent hillclimbing (rldhc), random descent hillclimbing
(rdhc), and iterated next-descent hillclimbing (m) each handles ties differently. The
probabilities of accepting differing quality moves by these methods are shown in

Table 3.2.

‘ Method ‘ Downbhill ‘ Uphill ‘ Lateral ‘
sa sigmoid | sigmoid | sigmoid (= 0.5)
metropolis 1.0 sigmoid 0.5 or 1.0
rldhc 1.0 0.0 0.5 0r 1.0
rdhc 1.0 0.0 0.0
m 1.0 0.0 0.0

Table 3.2: Probability of Accepting Moves by Methods

If the landscape around the current state is a ‘mesa’, it could take many lateral
moves before progress can be found. While never taking lateral moves is a feature
for iterated next-descent hillclimbing in avoiding possibly never terminating, we may

never see the edge of the mesa while searching.

Our simulated annealing approaches symmetrically invoke the sigmoid regardless
of the sign and magnitude of the change, yielding a 50-50 chance of accepting lateral

moves regardless of temperature.

The Metropolis Algorithm, a well-known simulated annealing algorithm, differs

from our uniformly sigmoid-based approach in that it always takes better moves. Its

40

Chapter 3. Chances: The Simulated Annealing Solution

acceptance criterion for lateral moves, however, was left unspecified in the original

1953 journal article [MRR*53]:

We then calculate the change in energy of the system AFE, which
is caused by the move. If AE < 0, i.e., if the move would bring the
system to a state of lower energy, we allow the move and put the particle
in the new position. If AE > 0, we allow the move with probability
exp(—AE/kT); i.e., we take a random number e, between 0 and 1, and
if e < exp(—AE/kT), we move the particle to its new position. If
€2 > exp(—AE/kT), we return it to its old position.

Subsequent work has differed on their treatment of the AE = 0 case, varying
from always taking lateral moves (e.g. [vLA87, KGV83, JAMS89, AKvL97, EFC98])
to taking them half the time ([vLA87, Ack87al).

Between DAO versions v1.10 and v1.14, we added the Metropolis criterion, and
an adjustable acceptance probability of lateral moves for random descent hillclimbing
and Metropolis to test the impact of differing acceptance probabilities on the final
outcome, in our problem domain. These results are reported in Sections 4.3.5 and
4.3.6 (starting on page 62). For comparisons with our simulated annealing schemes,
presented in Section 4.3.7 (page 64), we used the sigmoid probability of accepting
ties for both random lateral descent hillclimbing and the Metropolis algorithm.

41

Chapter 4

Results: Fall 1998 — Fall 2000

The DAO has been the principal method of dorm assignments over the last three
semesters at UNM, without replacing the previous system entirely. We scored on

both targeted areas of improvement: Usability and resource utilization.

Both experimental and production use of the DAO has provided many insights
into the dorm assignment problem and the simulated annealing solution. At version
v1.15, the artifact exists as both a practical tool to assign beds, and an academic
tool to investigate simulated annealing. Presented in this chapter are case studies

and tests spanning three fall semesters.

4.1 The Artifact

Motivated and constrained by the limitations of existing system, we have attempted
to provide the Housing staff with less frustrating ways to view and manipulate the

data to achieve better and faster assignments.

42

Chapter 4. Results: Fall 1998 — Fall 2000
4.1.1 Choosing Constraint Coefficients

Providing an understandable way to adjust the objective function is essential to
finding good coefficients and is key to its usability. In the HMS assignment system,

four rules, like this, are required to put students of nearer ages together:

18 years +/- 1 year 64

(not empty(applicant.birthdate) and not empty(occupant.birthdate))
and between((date()-applicant.birthdate) ,6205,6934) and
between((date () occupant.birthdate),6205,6934)

Such rules, though relatively general, are hard to understand and modify. In the

DAO, by contrast, the same constraint is expressed as two configuration parameters:

ERR_AGE_DIFF = 3
ACCEPT_AGE_DIFF = 2

Seniority vs Smoking Question

A student with seven semesters seniority did not get into any of his re-
quested halls because his smoking status caused too many red flags to go
up! Ranville was able to lower the smoking error enough to get him into a
single room in his first choice non-smoking dorm (with the understanding
he would not be able to smoke in his room), without causing havoc among
the other less senior smokers.

For the most part, at a constant temperature, larger coefficients create a more
rugged landscape, while smaller ones make a more even terrain. The smaller coeffi-
cients become more important as the temperature is lowered. Except for dorm and
roommate preferences, the rules apply evenly among all the residents. Mixed weight-
ed and unweighted constraints complicate the job of balancing the values chosen, but

serves to express the seniority and reservation order advantages.

43

Chapter 4. Results: Fall 1998 — Fall 2000

Mystery Unraveled

A student requesting a single room was assigned a single room in a hall they
didn’t want, instead of a double room in their third choice hall, even though
some lower priority students did get in. Other similar cases were found.
Trying the obvious fix — increasing the third choice hall error — still left
some students misplaced.

Further investigation uncovered the real explanation: The DAO was con-
strained because those lower ranked students’ other hall choices were already
filled, except for special living option rooms.

Summary reports generated by the DAO revealed that many of those special
living option rooms were ultimately left vacant. When Ranville removed the
excess special living designations and reran the DAQ, the problem was solved.

More quickly than ever before, Housing can generate a complete set of reports to
describe the current state of the HMS database. The ten DAO reports provide clues
for adjusting constraint coefficients and improving assignments. Dorm_View allows

the user to further refine the reports by hall, and visualize problem areas.

4.1.2 Between Two Systems

The existing HMS system is used for many other purposes beyond just dorm room
assignments. So DAO must co-exist with, rather than replace HMS, and this co-

existence imposes some overhead.

Using the new approach requires: Executing six queries to export the data out
of HMS, logging into a Unix system, running the DAQO, and importing the data back
into the master system (page 12).

An HMS assignment run, using a special set of rules (Appendix A) that say
‘just take our suggestions’, actually performs the assignments. Instead of updat-
ing HMS tables directly, we use this round about procedure to avoid voiding the

‘warranty’. This last step, which runs on a local copy of HMS to avoid network over-

44

Chapter 4. Results: Fall 1998 — Fall 2000

head, takes about 30 seconds per student on a 350MHz workstation. As mentioned
in Section 1.1.1, the HMS roommate logic is not rule-based, and thus we cannot alter
it by changing the HMS rules. However, we discovered that emptying the roommate

database on the local copy rendered the overpowering HMS roommate logic harmless.

Finally, five occupant related files are uploaded to the master copy to complete
the assignment process. These final steps in the process are streamlined with the use

of batch files selected through window system shortcuts.

A benefit of this approach is that nothing in the master system changes until the
data is imported and the master database need not be locked for the entire duration
of the assignment process. The DAO can easily run during normal business hours.
Besides running in less time, without weekend restrictions, results become available

in a timelier manner.

4.1.3 Batch Management

Each DAO run, consisting of one to many rounds, is uniquely identified by a batch
number. All the data associated with a run is organized in a directory named by
the batch. To ease archiving, batches are further organized under a term directory.
Each batch directory has subdirectories for REPORTS, SAVEDATA, GRAPHS, with
the most generally useful files (summary, exception, runlog and the HMS import) at

the top level.

4.1.4 Checkpoint Restart

To minimize runtime loss due to a system crash, network loss, or electrical outage,
DAO has the ability to restart a run from checkpoint files written after the last

completed round. The data is saved in five files: A small control file containing

45

Chapter 4. Results: Fall 1998 — Fall 2000

the latest summary information, two 50K byte files saving the current and best
student occupancy data, and two smaller files for the current and best waiting lists.
For operating systems supporting renaming operations, we use the OLD-NEW-LST
suffixes, otherwise we use generational suffixes. The former maintains only the last

two checkpoints, while the latter depends upon the number of rounds.

An internal version number, manually assigned to the objective function, indi-
cates whether the global grade can be verified during a checkpoint restart — any
change to the objective function, including user-designated coefficients, invalidates,

and therefore, bypasses the verification.

The checkpoint files are also used by Dorm_View to display the results of a pre-

vious batch.

4.1.5 Security Issues

Given the sensitive nature of the data to be communicated between the two systems,

security was a concern.

The ncpmount Linux utility enabled us to mount our Novell file server volumes,
access the data files and output the results from the Linux machine directly to the
Novell server, avoiding potentially insecure ftp access. Both machines were located
in the same office. Tcp_wrappers and ssh secured access to our Linux box from

other locations.

4.1.6 Efficiency Considerations

Several authors (e.g. [MS91, vLA87, AKvL97, EFC98]) concur that a risk with

simulated annealing is its extensive running times. The potential for cycles exists for

46

Chapter 4. Results: Fall 1998 — Fall 2000

the same reason SA does so well — its willingness to take uphill moves. By refining
neighborhoods, simulated annealing has become a technique used to reduce random

walk behavior [Mac99].
Of the DAQ’s three main processing stages (Table 4.1), our concerns for efficiency

lie in the middle:

Read and parse the input data and configuration
files to create internal data structures;

Optimize student bed assignments with CPU-
intensive SA algorithm on memory-resident data;

Output assignments & reports.

Table 4.1: DAO Process Flow

Linear time grading functions and memory-resident data structures support the
need for a tight inner optimization loop to keep running times manageable. Pro-
filing version v0.83 of the DAO!, revealed inefficiencies in the age_consensus and
music_consensus grading functions, and these were subsequently linearized. Avail-
able beds and moveable students are accessed directly through indexed arrays pro-
viding O(1) access with no search or filtering required. For efficiency, the objective
function is calculated most often by quickly applying changes in the cost resulting
from a move, reserving complete calculations of all the students for the phase interval

as an invariant insurance, as discussed in Section 2.1.2 (page 20).

Given our acceptable running times and results, we opted not to maintain a mem-

ory of some recently visited points (tabu solutions) and incur the extra overhead to

!The UNIX utility gprof was included as a Makefile option.

47

Chapter 4. Results: Fall 1998 — Fall 2000

recognize repeating them to help prevent cycling [HTdW97]. To diversify the search
and avoid unexplored neighborhoods we choose each move randomly. Furthermore,
we reset the random seed at the start of each round, and optionally start from the
same initial configuration at each round, or continue with the results from the last
round. With the size of our problem and a random selection method, there is lit-
tle chance of picking a point and the same subsequent point, repeatedly. During
the minimization step, the iterated next-descent hillclimber avoids cycles by never

accepting lateral moves.

As a CPU-bound process, linear speed up may be attainable as processor speeds
double about every eighteen months. This was evident with the 350MHz Pentium
II, and 700MHz Pentium III dedicated machines used in our tests. The average
processing speed was approximately nine thousand attempts per second on the slower
processors, and seventeen thousand attempts per second on the faster machine. The
post-round minimization steps were a quarter-time slower at 6,700 attempts per
second on the 350MHz computers, and 12,480 attempts per second on the 7T00MHz
machine. Though it has yet to be investigated, we hypothesize the difference was due
to a higher proportion of unaccepted moves during the minimization step, requiring

the original state to be restored.

4.2 (Case Studies

Case Studies, though not scientific, help provide context for the work. Discussed
here are some significant lessons learned over the course of DAO’s development, from

Fall 1998 through Fall 2000.

48

Chapter 4. Results: Fall 1998 — Fall 2000

4.2.1 Fall 1998, versions v0.01 - v0.39

Preliminary test results in Fall 1998 were convincing enough to take our solution to

Housing Management:

e An overall grade improvement of approximately 67% appeared achievable, with

almost 50% more students receiving a perfect score;

e Roommate requests across adjoining suites were supported;

e Preferences and roommate requests of returning students staying in their same

room were considered;

e Reduced running time — running in hours rather than days;

e Without weekend restrictions, the Housing staff was not prohibited from using

the HMS system;

e With an understandable way to adjust the grading function, hall preferences
could be made more important than roommate requests, and age differences

could be minimized.

The final data run through the same objective function as all our subsequent
tests, ended with a global score of 199,091,532 with 438 perfect grades, and 81.4%
satisfaction. This was based on multiple weekly iterations, new and returning stu-
dents in separate initial runs, manual roommate corrections for returning students,
and blocked halls and desireable rooms to stage placements. With a score almost

three times that of our test results, room for improvement was apparent.

49

Chapter 4. Results: Fall 1998 — Fall 2000

4.2.2 Fall 1999, versions v0.40 - v0.85

At this time, Ranville was willing to duplicate her efforts and use both systems to
test the worthiness of our new approach. There was some concern that seniority, es-
pecially lottery numbers, would not work to management satisfaction — our method
was not as easy to explain as the previous assignment algorithm. All the reports, pro-
vided in seniority order, have shown simulated annealing produced assignments that
imitate the deterministically-ordered seniority model well enough that this potential

deal-breaker disappeared as an issue.

To minimize bad assignments, Ranville and her staff have incorporated the pars-
ing and data checking provided by the DAO into the pre-assignment data entry

process.?

In response to our concern that multiple runs might yield less than optimal results,
Ranville agreed to try new and returning students together for the first run, and every
two weeks thereafter. This was a big win as the majority of the applications would

be in the initial batch.

Ranville still needed the ability to block rooms manually. Minimizing this need
became the inspiration to create a constraint to effectively upgrade students automat-
ically. Although automatic upgrading was available, there was no way to distinguish
moveable students from the final manual placements Ranville made day-to-day while

talking to parents, students and coaches. Automatic upgrades would have to wait.

Unfortunately for science, this first use of DAO proved so successful that Ranville
quit the side-by-side testing and made the decision to use our assignment program ex-

clusively instead. We learned some important lessons this first summer of production:

2Flex and Bison UNIX utilities are used to parse each of the input data files, providing
extensive data checking.

a0

Chapter 4. Results: Fall 1998 — Fall 2000

1. HMS roommate logic could ignore our suggested placements;
2. HMS had to be completely shutdown before copying its files;

3. Setting the partial_fill error too high at the beginning of the summer when

there were plenty of spaces gave us unexplainable placements;

4. Though presumably helpful to the HMS assignment process, filling in choices
for students who left their preferences blank on their application forms, took

away some degrees of freedom from the DAO;

5. Automatically setting all non-smokers as objectors removed the possibility of
giving those who actually made the designation on their application extra con-

sideration placing them in non-smoking dorms (discussed on page 6).

6. We needed a way to distinguish moveable and non-moveable assignments for

automatic upgrading to work.

Running the final assignments after manual upgrading through the objective func-
tion, we found Ranville achieved a global grade of 171,948,075 where 608 students
had a perfect grade, and there was 87.3% satisfaction where most students were
placed in one of their requested hall. Anecdotally, the Area Coordinators noted

there were fewer room change requests.

4.2.3 Spring 2000, versions v0.90 - v1.03

For the spring semester, the first question was: With only two hundred new student
placements was it worth using the new system? According to Ranville, the answer

was an overwhelming ‘yes’.

New requirements surfaced for the second half of the academic year, such as the

first_timer contraint to put new students together; blocking ‘doubles-as-singles’ so

51

Chapter 4. Results: Fall 1998 — Fall 2000

returning students can keep their double room to themselves; and keeping specific

beds empty in rooms where the occupants agreed to be hosts to visiting students.

4.2.4 Fall 2000, versions v1.04 - v1.15

The Dorm_View GUI and the automatic upgrading capability were in place. For the
first time, Ranville had the tools to make manual assignments with more complete
knowledge of the consequences of each move. The FINAL OCC attribute added to
HMS provides her the means to effortlessly identify who can be moved. Dorm_View
supports this working model of manual upgrades by providing detailed results in

terms of the objective function before the changes are committed.

Ranville remarked how quickly she was able to modify the initial results of the
DAO with Dorm_View (Figure 4.1) — she made 38 changes in a few hours. She used
the blocked/unblocked room lens, and the final/moveable/new/moved student lens.
Gliding over the rooms with the mouse she could also see the gender of the room.
She chose to view all the dorms in one window to facilitate the Find Student function,
and the waiting list in a separate window. The scrolling messages documented the

moves she made so she could regain state between interruptions.

After two weeks, Ranville had improved the overall results since her first post-
DAO attempts, giving 82 additional students one of their three requested hall choices.
Analyzing her changes, it appears the first_timer and mized_study_late constraints
could have been smaller, and the better_bed constraint used. Keeping in mind that it
is easier to modify a few bad bed assignments than to change coefficients that have
a global impact, the output will occasionally require the human touch to break the

rules.

We learned a critical lesson with these first few manual upgrades: Students moved

to different beds in the same hall also had to be ‘de-bedded’, otherwise HMS would

52

Chapter 4. Results: Fall 1998 — Fall 2000

search for another place if the suggested bed is occupied. The de-bedding process
took eleven key strokes per student in HMS, so too many beds changes would make

auto-upgrading unusable in the current environment.?

Subsequent test runs produced over 650 same hall bed changes to improve 25 hall
assignments; we do not know how many were necessary or just because there was no
reason not to. In version v1.12, we gave it a reason slightly less dramatic than never
accepting a lateral move — the different_bed constraint, designed to delicately tag
moving bed positions in the same hall. Same hall bed changes dropped by a factor

of six in test runs.

With only a few cancellations automatic upgrading was not used this semester. A
smaller resident population and more group matches was credited for the small num-
ber of cancellations. Though the automatic upgrading feature and the different_bed
constraint were not tried, Ranville found power in the interactive Dorm_View tool

to upgrade students manually, faster and better.*

Three subsequent DAO runs placed 100, 90, and 69 more new students — only
16.4% of the 1,578 students in the initial run. These runs were made with the
more desireable dorms blocked, forcing the system to place the late-comers into
the unpopular dorms. This legacy blocking practice provides control and is well-

understood.

At the end of August, based on 1715 residents, the results showed: A total score
of 100,417,531 with 94.0% satisfaction, and 829 students with perfect grades.

3The nMs auto-assignment batch could have been backed-out and another configuration
imported and re-assigned in about five hours, but by then too much time had been invested
in manual upgrades that would have been lost by reversing the batch.

“During ‘Move-In-Week’, ‘self-upgrading’ replaced auto-upgrading as evidenced by a
poster announcing: DOUBLES AS SINGLES — MOVE-IN SPECIAL — Rooms in Coronado and
Santa Clara — Awailable for Immediate Occupancy (six male rooms & six female rooms).

93

Chapter 4. Results: Fall 1998 — Fall 2000

Fle Edit Halls

RoomlLens

Studentlens Reports Windows

¥l |3 F araphs

(e[

Reports Windows

students: female male

gender: male

Rooms: Smoking Undecided [T WO Smoking

Grade: 89.0m (89025323)

Grade /10000000 w5 Moves

smoke: 0BJ

_ Rooni#:

SRC m:n SRC
=lo! SRCGRD
room type: SINGLE
release: OK
1 mate vequests:
H * in SRCEE-A20
Grade: 0

N

Rooni: SRCEE -A201C [1542
mender: male I_ _
ke: HSHEK
w_ﬁ._,.n SRC fove 1: Grade was §9.5m Aaamﬁuuwu Worsened E_ 585870
slo: SRCGRD fowe 1:Moved CEL2T_ D0 2T ..o «o o...,From ALYV
rwom type: SINGLE . DD n [=]=] m [— o T
M& bo WaitList 0

=wite: 105

E[DEE|E| Nove 2: Grade was §9.0m (89025323} Improved by -524470

Selectto Move _ Move Here _ Letter _ m m (2] L] Nowve 2:Moved Cl...pocos o po yoov v~ ., From
_ﬂ__ﬂ:ﬂ_ﬂ.ﬂ:ﬂ:ﬂ.ﬂ:ﬂ:ﬂ.lﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ:ﬂ.l]]]lll]l aitList 0 to COR 23

Print Dismiss All

JE—

Rooms: None Selected
Successtully moved |

ALY11ENE

students:

Roomé: 201

s ek 0alk s

. COR23%

Clear Messages

| =L LA N =

student

release: HO
0 miae requests:
Grade: 0

Roon: ALVITE [30
yender: male

SRCES-AX0IC SRCGRD suite_i05

(]

choice: ALY
sle: -
voor type: DOVEBLE

Acept Move _ cancel Move _

yender: male

dob: 04231380
choices: - - -

0 mace requests:
ERE_TRIPLE_FILL: 50000
ERE_MIXED_SMOKE: E0000

Room: COR22 [207
yender: male

= | smoke: HSHK
choice: COR

\ slot -

roor type: DOUBLE

Prirt _ Dismiss All _ Dismiss _

Clear Messages _
S

Figure 4.1: Dorm_View Screenshot

o4

Chapter 4. Results: Fall 1998 — Fall 2000

4.3 Experimental Results

Complementing the case studies, we performed experiments to better understand the

power of randomization and our cooling schedules as referenced in Table 4.2.

Abbreviation || Description ‘

sa0 algorithmic

sa0/m algorithmic, + min step

sal table-driven

sal/m table-driven, + min step

sa2 attempt-based adaptive

sa2/m attempt-based adaptive, + min step

sa3 accept-based adaptive

sa3/m accept-based adaptive, + min step

sa4 reheating accept-based adaptive

sad4/m reheating accept-based adaptive, + min step

sigmet1 Metropolis and table-driven schedule (half laterals)

sigmetl/m Metropolis and table-driven schedule, + min step

sigmet4 Metropolis and reheating schedule (half laterals)

sigmet4/m Metropolis and reheating schedule, + min step

met1 Metropolis and table-driven schedule (full laterals)

metl/m Metropolis and table-driven schedule, + min step

met4 Metropolis and reheating schedule (full laterals)

met4/m Metropolis and reheating schedule, + min step

rdhe random descent hillclimbing (no laterals)

rdhc/m random descent hillclimbing, 4+ min step

rldhc random lateral-descent hillclimbing (half laterals)

rldhc/m random lateral-descent hillclimbing, + min step

rldhc2 random lateral-descent hillclimbing (full laterals)

rldhc2/m random lateral-descent hillclimbing, 4+ min step

mr minimize using interated next-descent hillclimbing
(random start in arbitrary order)

m minimize using interated next-descent hillclimbing
(in priority order)

r randomized

Table 4.2: Key to Methods

95

Chapter 4. Results: Fall 1998 — Fall 2000

4.3.1 Characteristics of the Data

For our experiments, we used the Fall datasets from 1998, 1999 and 2000. The Spring
dataset was not used as it would have required changes in the objective function to

be accurate.

Fall Yr || # students | # beds

2000 1578 2050
1999 1871 2064
1998 1930 2085

The 1998 dataset had not benefitted from DAO’s extensive data integrity check-
ing, unlike the later years. Essentially all the data entry errors were eliminated in the
2000 dataset, and less than a dozen problems with contradictory music tastes and
birthdate errors remained in the 1999 dataset. There were 457 empty preferences
for room type and first choice halls, and 23 first hall choice and special living option
mismatches in 1998. Smoking students were the source of most of the contradictory
preferences each year as they requested non-smoking halls, non-smoking special living

options and non-smoking roommates:

Fall # Requests
Year | Smokers | % NS Hall | % NS SLO | # NS Mates

2000 126 35.0 04.8 144
1999 173 33.0 33.0 80
1998 142 27.5 08.5 68

26

Chapter 4. Results: Fall 1998 — Fall 2000

4.3.2 Methodology

Using the three datasets, we ran a series of 32 runs, using DAO versions v1.10 to
v1.15, varying only the cooling schedules and the dataset. Each round within a
term’s dataset began with the same arbitrary placement of all students into available
beds, followed by a randomization step®. The objective function penalties remained
constant, and each round used a different random number seed. All students were
moveable and no beds were blocked. A minimization step in priority order followed

each round.

Using non-parametric ranking methods which make no assumptions about the
distribution of the samples, we calculate the mean rank® of various approaches listed
in Table 4.2 based on the ranks of their measurements rather than the measurements

themselves.

Ranking the data from lowest to highest scores, we use the Kruskal-Wallis test,
often called an “analysis of variance by ranks”, for groups with three or more sample
populations. For tied ranks, the rank assigned is the mean of the ranks they would

have been assigned had they not been tied.

In each case, the null hypothesis asserts the populations are the same. If the test
statistic is greater than o = .05 (and in most cases .01), we reject the null hypothesis,

and conclude the samples come from different populations.

To determine between which of the samples significant differences occur, multiple

comparison tests of the rank means are made against the), test statistic [Zar99].

The following sections present our specific investigations and observations.

SFor RANDOMIZING PHASE times (default 100,000), we randomly select a student and a
bed and switch them with a 50% probability, like running at a high temperature.

6The mean rank allows for varying sample sizes: A group’s rank sum is divided by its
sample size.

o7

Chapter 4. Results: Fall 1998 — Fall 2000

Scheme H Avg Score Std Dev ‘ Avg Best

Std Dev ‘ Avg Attempts

sa0 49.084 0.270 49.082 0.276 54.106
sal 52.170 0.887 49.814 0.303 6.340
sa2 49.276 0.324 49.174 0.209 12.095
sa3 50.062 0.620 49.284 0.258 8.171
sa4 49.069 0.308 49.055 0.288 19.528
sigmet4 49.051 0.235 49.032 0.236 18.605
sigmet1 52.022 0.857 49.741 0.366 6.162
rldhc 49.121 0.244 49.115 0.248 42.526
mr 667.506 10.266 667.506 10.266 40.000
m 671.013 7.197 671.013 7.197 40.000
r 933.03 11.232 933.03 11.232 .100

Table 4.3: Statistics (in millions) from Fall 2000 Tests

Scheme H Avg Score

Std Dev ‘ Avg Best Std Dev ‘ Avg Attempts ‘

sa0 88.685 0.188 88.683 0.194 43.376
sal 92.640 0.872 89.306 0.238 8.379
sa2 88.858 0.292 88.777 0.226 17.735
sa3 89.281 0.498 88.722 0.189 13.019
sad 88.629 0.243 88.620 0.229 27.608
sigmet4 88.570 0.214 88.562 0.213 26.884
sigmet1 92.998 1.015 89.362 0.256 8.482
rldhe 88.750 0.221 88.743 0.218 43.361
mr 867.751 8.405 | 867.751 8.405 40.000
m 863.249 7.132 | 863.249 7.132 40.000
r 1156.37 35.924 | 1156.37 35.924 .100

Table 4.4: Statistics (in millions) from Fall 1999 Tests

Scheme H Avg Score Std Dev ‘ Avg Best Std Dev ‘ Avg Attempts

sa0 71.336 0.831 71.329 0.839 44.162
sal 75.310 1.080 72.049 0.881 9.182
sa2 71.078 0.520 71.062 0.514 19.830
sad 71.606 0.895 71.268 0.760 14.021
sa4 71.193 0.805 71.173 0.803 31.728
sigmet4 71.077 0.740 71.071 0.734 31.255
sigmet1 74.810 1.209 71.788 0.807 9.102
rldhc 70.992 0.544 70.987 0.533 43.772
mr 836.634 5.462 836.634 5.462 40.000
m 838.684 5.437 838.684 5.437 40.000
r 1125.95 13.412 1125.95 13.412 .100

Table 4.5: Statistics (in millions) from Fall 1998 Tests

o8

Chapter 4. Results: Fall 1998 — Fall 2000

4.3.3 Random Optimization

Are our random optimization methods better than resource-matched deterministic

hillclimbing?

For our deterministic entry, starting with randomized configurations, using a null
entry table-driven scheme, we took the best of five iterated next-descent hillclimbing
rounds (approximately 40 million total attempts), in both random (mr) and priority
order (m) as described in Section 3.3. The random and priority orders of iteration

did not register any difference.

Pairwise comparisons consistently showed the iterated next-descent hillclimbing
rounds were different than all the randomized methods tested, except the unmini-
mized table-driven schemes (sal & sigmetl) in all terms, minimized table-driven
schemes (sal/m & sigmetl/m) in 1999, and the unminimized accept-based adap-

tive scheme (sa3) in Fall 2000.

On average, the iterated next-descent hillclimbing scores (m & mr) were an order
of magnitude greater than all the others’, with wider standard deviations (Tables
4.3 through 4.5), forcing us to conclude our randomized methods have a distinct

advantage over simple hillclimbing.

4.3.4 Taking Uphill Moves

Given a random algorithm, does varying non-zero probabilities of accepting an uphill

move work better than never taking an uphill move?

"Tterated next-descent hillclimbing did, however, improve the score of an average random
state (r) by 25%.

29

Chapter 4. Results: Fall 1998 — Fall 2000

Mean Rank

Mean Rank

Mean Rank

550

500
450
400
350
300
250
200
159

(Q

sigmet4 sa4 sa0/m

100

s T

sal

sigmetl

. sal/m sa3
sigmetl/m— |

sa3/m

ridhc

rldhc/m SaZ/m
sa0

550

Figure 4.2:

Method

Mean Rank By Method — Fall 2000

500
450
400
350
300
250
200 -

14

LQ

S|gmet4 sa4 S0m

100 !

met4/m m m ﬂ

sal/m
sigmet1/

sa3/m

sigmet

sal

550

Figure 4.3:

Method
Mean Rank By Method — Fall 1999

500
450
400
350
300
250

sigmet4 rldhc sad/m

l—+
S

me

150

il

Si

sat/m
sigmetl/m

sa0/m saO
capjm S34 a2 533/”‘

minnl

sal

Figure 4.4:

Method

Mean Rank By Method — Fall 1998
60

Chapter 4. Results: Fall 1998 — Fall 2000

Average Score (millions) Average Score (millions)

Average Score (millions)

525

52
515
51
50.5
50

495

s

4 ridhc/m
met4/m sﬂn sa4 sa0/m & M A

sigmet4 sa2/m

| —

sigmetl/m

sa?2 sa3/m

[[]

sigmetl

sal/m S&3

sal

il

93

Method

Figure 4.5: Average Score By Method — Fall 2000

igme

925
92
915
91
90.5
90
89.5
89

sig

rldhc/m

sigmet4 sa3/m ridhc

sa0/m
met4/m _ sad/m sa4 AWM a0 ==)

sa2/m sa2

[]

sa3

allm
sigmetl/

=

88.5

75.5

Method

Figure 4.6: Average Score By Method — Fall 1999

75
745
74
735
73
725
72
71.5
71

S
fhcim . saoim SifmTet .

a2 sadim g4 SA3/M ﬂ ﬁ ﬂ

sigmet4/m

sal0/m

sigmetl/m

sa3

ow
[s)]
H

sigmetl

]

70.5

Method

Figure 4.7: Average Score By Method — Fall 1998

61

Chapter 4. Results: Fall 1998 — Fall 2000

Here, in some sense, we are comparing hillclimbing and simulated annealing. To
answer this question we use the same 50% lateral move probability, and 40 million

hillclimbing attempts followed by a minimization step.

Figures 4.2 through 4.4 show us the answer is ‘not necessarily’. For example,
hillclimbing (rldhc) without minimization was significantly different than sal/m
and sigmetl/m in every dataset: Hillclimbing can beat some simulated annealing
schedules. Furthermore, we cannot say our best ranked simulated annealing schedule
was statistically different than these hillclimbing results. In fact, in the Fall 1998
dataset — the only dataset where the mean rank order (Figure 4.4) did not match

the average score sorted order (Figure 4.7) — the rldhc average score was the lowest.

Sometimes, with a good annealing schedule, we can escape local minimal traps
that catch hillclimbers, and arrive closer to the global optimal solution, though how
close we cannot say. As we see in the next section, accepting lateral moves is essential
to finding a good solution in our domain. With a sufficient number of attempts, ran-
dom lateral descent hillclimbing (rldhc) produced results comparable to simulated

annealing.

4.3.5 Importance of Lateral Moves on a Mesa

Does accepting lateral moves impact the search for a minimal solution?

To investigate the significance of lateral moves, we ran three random descent
hillclimbing methods, based on 40 million attempts, and varying the probability of
accepting lateral moves from never (rdhc), to half (rldhc), and then to all the time
(rldhc2). We also ran the Metropolis algorithm with half and all lateral moves
accepted based on the table-driven (sigmetl & metl) and reheating (sigmet4 &

met4) cooling schedules.

62

Chapter 4. Results: Fall 1998 — Fall 2000

% Fall 2000 Fall 1999 Fall 1998
Scheme | Ties || Avg Score Std Dev | Avg Score Std Dev | Avg Score Std Dev
rdhc 0 50.077 0.297 89.100 1.863 71.707 0.687
rldhc 50 49.121 0.244 88.750 0.221 70.992 0.544
rldhc2 100 49.076 0.394 88.730 0.229 71.061 0.540
mr 0 667.506 10.266 867.751 8.214 836.634 5.462
m 0 671.013 7.197 863.249 7.405 838.684 5.431
sigmet4 | 50 49.051 0.235 88.570 0.214 71.077 0.740
met4 100 49.272 0.426 88.726 0.378 71.057 0.525
sigmetl | 50 52.022 0.857 92.998 1.015 74.810 1.209
metl 100 52.006 1.121 92.626 0.926 74.619 0.900

Table 4.6: Lateral Test Statistics (in millions)

Across the Fall 2000 and 1999 datasets (Table 4.6), we found random lateral
descent hillclimbing, accepting all or half of the ties, differed significantly from ran-
dom descent hillclimbing (rdhc) and iterated next-descent hillclimbing (m & mr),
both never taking lateral moves and producing less desireable results. This suggests

our problem domain has ‘mesa’ characteristics — large regions of unchanging value.

Varying the probabilities of accepting lateral moves with the Metropolis algorithm
showed no significant difference for either cooling schedule when tested on all three
datasets (Table 4.6). With a mesa landscape, accepting lateral moves is essential
to finding better solutions — whether the best probability is 100% or 50% depends
upon the dataset.

4.3.6 Varying Probabilities for Better Moves

Should better moves always be accepted?

63

Chapter 4. Results: Fall 1998 — Fall 2000

By avoiding the sigmoid calculation in the case of better and lateral moves, the
Metropolis criterion saves some CPU cycles. On the other hand, the symmetric

sigmoid algorithm provides a consistent logic independent of the quality of the move.

Using the reheating and the table-driven schemes, as described in Section 4.3.5,
we compared the Metropolis criterion to our sigmoid-based approach, both accepting

half the lateral moves, searching for significant differences in the final results.

Among the three datasets, based on 32 runs each, we found no significant difference
among the reheating schemes, either before or after minimization. The table-driven
schemes after minimization were significantly different than before minimization, but

there were no reported differences within each group.

We have no statistically sound evidence that varying the probability for better
moves differs significantly from the Metropolis criterion. Both approaches result in

the same asymptotic distribution, since most considered moves are uphill.

4.3.7 Reaching a Local Minimum

Is the minimization step important to the final result?

The use of iterative descent hillclimbing (m) on the results from our random
methods not only guaranteed local minima — a marketing advantage — it also

improved the results of the methods, often to the point of indistinction.

The following statements regarding the differences between the schemes could
only be made before the minimization step took place. With the Fall 1998 data, sa3
was significantly different than sigmetl with a .01 confidence level. In Fall 1999,
sigmet4, sa4 and sa0 were strongly different than sa3 with .01 confidence, and

sigmet4 differed from sa2 with .05 confidence. For Fall 2000, sigmet4, sa4 and

64

Chapter 4. Results: Fall 1998 — Fall 2000

rldhc were statistically different than sa3 with .01 confidence, and sa2 with a .05

confidence level.

Most of the differences between the schemes and the table-driven schemes re-
mained after minimization. In Fall 2000, all the schemes except sa3 (i.e. sigmet4,
sa4, sa0, rldhc, sa2) differed from sal with .01 confidence; sa3 changed from no
apparent difference with the table-driven approaches, to strong differences with .01
confidence after minimization. With the Fall 1999 dataset, all the schemes remained
strongly different than sal and sigmet1. In Fall 1998, all the schemes were initially
strongly different than the table-driven schemes, but sa3/m and sa0/m lost this
distinction with sigmet1/m. The table-driven approaches were the least volatile to

the post-round minimization process, and ranked poorly.

sa3 was most volatile following the minimization step (see page 60). While there
was no change in the rank order of the schemes with the Fall 2000 dataset, in Fall
1999 (Figure 4.3), sa3/m moved ahead of rldhc/m and sa2/m, and for Fall 1998
(Figure 4.4), sa3/m moved ahead of sa0/m.

Disappearing differences among the schemes, after minimization, implies the low-
est score before minimization is not necessarily the solution that reaches the lowest
result. This realization threw a monkey-wrench into the original idea of performing
the minimization step only on the best pre-minimized round. Based on these results,
DAO version v1.10 was changed to allow per round minimization at the expense of

increased running time.

To detect the possible situation where an overall lower grade occurring during a
round might be lost by accepting an uphill move, we added the ability to keep track
of the best grades after each accepted improving move during a round, and verify
this was no better than the final unminimized result. The option of maintaining this

lowest per accept score as the global best grade was added in DAO version v1.15.

65

Chapter 4. Results: Fall 1998 — Fall 2000

Out of eight trials each across all three datasets, we saw this case occur once
with sa3 in the 1998 dataset, and twice with sa4 in the other two datasets. This
small sample provided support both for ignoring and remembering the lowest score
ever seen. In one case, minimization after each round lost the lowest result which
would have minimized even further, in the other it saved it because the ending grade
minimized lower than the within-round lowest grade would have. We did not see the
case where the lowest round score before minimization was less than the minimized

ending score.

The minimization step plays an important role in that it guarantees a local mini-
mum solution. The amount of work performed by the minimization step varies. One
might have guessed that a long minimization step implies a poor scheme, but the
results show otherwise. For example, sa3 typically takes many iterations to reach
a local minimum, while sa0 often finds a local minimum by itself, yet both achieve

comparable scores.

4.3.8 Comparing the Schemes: Scores and Attempts

So which scheme works best?

Without stronger statistics, score alone is too highly data-dependent to yield a
good characterization of scheme quality. If not score, then perhaps rate of improve-
ment could be useful. On average, sal was the most efficient approach, producing
the most improvement per attempt. It was also the fastest, and as it turns out,

consistently the worst performer, on all three datasets.

Turning to the ‘Score vs Total Attempts’ scatter plots (Figures 4.8 through 4.10)
for assistance, ideally we would like to see data in the bottom left-hand corner of the

graph and few results in the upper right. Instead, we see sal produced some of the

66

Chapter 4. Results: Fall 1998 — Fall 2000

50.5 T T T
+ sa0/m
X sallm
50 1 x sa2im
@ o sa3/m
c b ® sad/m
2 495 g 1 © rdhc/m
£ @;o e sigmetd/m
> ¢ A sigmetl/m
5 49 e
5 ¥
0 0
i\:
48.5 o,
| |
48 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 Attempts (millions)
Figure 4.8: Score vs Total Attempts by Scheme — Fall 2000
89.8 z§>< A T T T T T T T
A + sa0/m
896 - %ﬁ(1 x salim
89.4 3 4 x sa2im
@ o sa3/m
c 892+ X X, 41 ® sadm
S ol i wm O ® o rldhc/m
E R " o] 0 %%5%9 " . n Q . * sigmet4/m
88.8 - o Xe_ o ©® Je = " %. 4 2 sigmetl/m
5 X D[D el Fx "u .!‘ 3 0
g 8o CHOEE I T VTR %
88.4 | 00 Fwee T 2w H §
88.2 - x * e . 0 i
88 1 1 1 u 1 1 I. 1 ° 1
5 10 15 20 25 30 35 40 45 50 Attempts (millions)
Figure 4.9: Score vs Total Attempts by Scheme — Fall 1999
745 Ml T T T T T T T o
X + sa0/m
“r 1 x salim
735 | 4 * sa2im
~ s b o " 0 sa3/m
S B o 2 oo n 1 ® sadm
= XX " o rldhc/m
E 725 g% Sl X - ? 1 e sigmetd/m
S np o xx ©ao ® on a"e * . © 1 2 sigmetl/m
5 % ﬁ p O *ﬂﬁf ¥ e o+
3 715 ¢ .l. + i
ral B
) %%DDD’%‘ *"°o.- I é@%@u
705 | “ o, o
70 1 1 1
5 10 15 20 25 30 35 40 45 50 Attempts (millions)

Figure 4.10: Score vs Total Attempts by Scheme — Fall 1998
67

Chapter 4. Results: Fall 1998 — Fall 2000

highest scores, while the results of the other schemes are in the same score range. A

few of the sa4 rounds came out the lowest.

In terms of attempts, we see sa0 and rldhc® take the most attempts, sal and
sa3 the least, leaving sa2 and sa4 in the middle.” Furthermore, sa4 had the widest
variability in total attempts, while sa2 and sa3 were more predictable. Overall, the

dynamic adaptive schedules gave us the best performance.

With so much variability in scheme performance, and sensitivity to changes in
the objective function and the data, rather than trying to pick one, we use all the
schemes in rotation, and multiple runs (as time permits), to sample the different

approaches for the best results.

8The random lateral-descent hillclimbing took as long as the algorithmic scheme inten-
tionally to give it the fairest opportunity to find a good configuration. As hillclimbing was
not our focus, we offer no data regarding its performance in fewer attempts.

9The Metropolis variations of the table-driven and reheating schemes behaved similarly
to our simulated annealing versions in number of attempts.

68

Chapter 5

Conclusions

Results in the previous chapter show that simulated annealing can effectively match
students and dorm rooms according to student preferences and the policy of the

dorm system. DAQ’s randomized global approach produces faster, better matches.

While DAO version v1.15 is undeniably a good beginning, looking ahead to
its fourth consecutive semester of service, we conclude with some ideas for future

enhancements, from the nearer-term to the more speculative:

Student Designated Priorities Naming their top three preferences, students
could designate their own priorities, instead of relying on the current one-size-fits-all
approach. This would eliminate staff having to guess between hall, roommate and
room type on a case-by-case basis, and likely to lead to much happier students and

staff.

New Hall A new apartment-style dorm, scheduled for occupancy Fall 2001, needs
to be added to the DORMS.INT configuration file following the pattern of the Student

Residence Center buildings. A two or three letter acronym for the building will

69

Chapter 5. Conclusions

be elected and added to the HMS database, but no code changes in the DAO are
expected. The application form must be reprinted with the new hall as a choice,

providing an opportunity to make other improvements to the form.

New Room Type According to Area Coordinator Jenna Sultemeier, demand was
so overwhelming for the larger rooms, to accommodate the growing number of new
university students having never shared a room with a sibling at home, a new Super
Single room type may be offered Fall 2001.! Designating a new room type for these
rooms in the database, and modifying the application form to reflect the new choice,

can implement this change without modifying the code.

Online Applications Web-based residence forms could relieve some of the data
entry burden as well as standardize the data. As borne out by a previous class group
project, such an undertaking would also raise new issues, such as security, duplicate
applications, and credit card payments. Again, interfacing with the existing legacy

system continues to constrain new development.

Tighter Coupling Eliminating the exporting process from HMS to the DAO by
accessing the database directly could provide a more seamless integration of our tech-
nology with the entire housing management system. Memory resident data structures
would still be created for an efficient main annealing loop. Without an API from

CBORD, however, this approach is difficult to implement and maintain.

Formatted Reports Outputting the reports in HTML, for example, would make
the information easier to read with a browser. This idea also applies to the user

documentation.

ISultemeier, J. Personal communication, September 12, 2000.

70

Chapter 5. Conclusions

Two-Move Local Minimum The DAO currently guarantees that within one
move, there is no better place for anyone, but it makes no promise about two moves.
Though expensive in runtime, all pairs of moves could be checked. The current en-
gine would require new data structures to maintain a move history to restore state

between attempts.

Parallel Processing If DAO run times became excessive, parallel processing could
be used to gather results of individual rounds in less overall elapsed time, allowing
the best of the best to rise to the top more quickly. Initially configuration parameters
for constraint values, dorm definitions, blocked beds, annealing options and data files
would be distributed. On a per round basis, each slave process reports its total score
whenever available, and the master checks if it is a new record score, and signals
the slave to save the configuration if so, otherwise the master signals another round
or the end. Since slave processes do not have to synchronize with each other, the

varying times of the schemes are less of a problem.

Realtime Visualization To visualize the assignment process in the GUI, accepted
moves could appear in realtime as blinking beds with graphs indicating the overall
grade, temperature, and other statistics, changing over time. Of course the impact
of screen redrawing would dramatically slow the optimized main inner loop, but it

could be valuable to help users better understand the processing.

Judgment and Reasoning Based on the concepts in [AB83], wouldn’t it be nice,
if you could just ask the DAO to explain itself? Answering the question, “why did
you do that instead of this?” reduces the explanation task to one of accounting
for the differences between a pair of moves instead of a ‘verbose’ enumeration of
all possible bed assignments. Preferably only the relevant data would be presented.

Using judgment to form an interpretation of the environment with respect to a

71

Chapter 5. Conclusions

goal, say a group request, an analysis could explain why the roommates did not
get together. Using some form of reasoning, it could propose avenues to make a
move happen. Given the ability to recognize significant differences in the value of
concepts, it might call our attention to empty bed situations, a gender inequity, or
a smoking stalemate. Currently this is all done by two people using the GUI and

DAQ’s extensive reports.

Further Generalization Using this system at another university to do the same
function would require analysis of and probably modifications to the objective func-
tion, input formats, report designs and other customizations. Implementing an ob-
jective function definition language for the DAO, rather than necessarily requiring
low-level reprogramming in C, would facilitate such technology transfer. A more
generic rewrite of our existing SA engine as a member of a search library with inter-
face requirements for the objective function, might also be useful in applying global

optimization techniques to other problem areas.

More improvements could certainly be added, the DAO is still a work in progress.

72

Appendices

A HMS Rules for Assignment with the DAO

B The DAO Objective Function

73

74

75

Appendix A

HMS Rules for Assignment with
the DAO

HMS assignment expressions to place a student in the room being tried only if it

matches the DAQ’s suggestion imported into the Force Occ attribute field:
MATCH FORCE 0CC +262144

alltrim(rooms.bldg_id)+alltrim(rooms.room_no) ==

alltrim(getattrib(applicant.id+gcterm,"Force 0Occ"))
NOMATCH FORCE OCC -999

alltrim(rooms.bldg_id)+alltrim(rooms.room_no) <>

alltrim(getattrib(applicant.id+gcterm,"Force 0Occ"))

HMS will not place a student in the suggested room if someone is already there.

If HMS has roommate matches to make, these rules may not work as expected.

74

Appendix B

The DAO Objective Function

The Objective Function!, f, embodies all the contraints used to match students and

dorm room beds. The domain is all the students in their beds.

The details of the two types of errors: Room-student and student-consensus, are

as follows:?2

!This description corresponds to the last time it was modified in DAQO version v1.12,

when the different_bed constraint was added.
2Default values are zero unless specified (this policy was adopted in version v0.84).

75

Appendix B. The DAO Objective Function

1. ROOM-STUDENT RELATED CONSTRAINTS: For each student:

NAME H DESCRIPTION SCORE
Bed not in a bed 1 * ERR.NOBED
Gender! male in a female room, or female | 1 * ERR_-WRONG_SEX
in a male room
Smoke non-smoker in a smoking room, or | 1 * ERR-WRONG_SMOKE
smoker in a non-smoking room;
objector in a smoking room, or | * SMOKE_OBJ WEIGHT
objector in a smoking-either room
Dorm specific room/bed, building, or | w * ERR_SPECIFIC_ROOM*
Prefs? better bed request not granted
Special Living Option (SLO) w * ERR_SPECIAL_LIVING*
15t Hall choice not granted w * ERR_.DORM_CHOICE1*
274 Hall choice not granted w * ERR_.DORM_CHOICE2*
374 Hall choice not granted w * ERR_.DORM_CHOICE3*
Room-type not granted w * ERR_ROOM_PREF*
Underage | the dorm has age restrictions® | # years under age *
and the student’s age is less | ERR.UNDERAGE
than UNDER_THIS_AGE, or miss-
ing uses MIN_ AGE_DEFAULT
New Resi- || the dorm has new | (NEW_RESIDENCY_SEMESTERS
dent restrictions® and the stu- | - studentncs] + 1) *
dent has been a resident | ERR.NEW_RESIDENT?
NEW_RESIDENCY_SEMESTERS
Un- the dorm has special living op- | 1 *
requested || tions but the student did not re- | ERR_.UNREQUESTED_SLO
SLO quest a slo®, or dorm has special
living options different than the
student’s requested slo®
Better student is not in a better bed 7 | student[ncs| *
Bed ERR_BETTER_BED?
Different student is not in the first hall, as | 1 * ERR_DIFFERENT_HALL
Hall initialized by ASSIGN.LST®
Different student is in the same first hall, | 1 * ERR_DIFFERENT_BED
Bed but a different bed, as initialized
by ASSIGN.LST®
Worse student is mnot in the first | 1 * ERR_.WORSE_HALL
Hall hall or better hall according

to their prefs, as initialized by
ASSIGN.LST®

76

Appendix B. The DAO Objective Function

2. STUDENT-CONSENSUS CONSTRAINTS:

For each room:

NAME H DESCRIPTION ‘ SCORE
Gender’+ | not completely one gender # students * min[gender| *
ERR_MIXED_SEX
Smoke’+ not completely smokers or non- | # smokers *
smokers (smokers penalized); ERR_MIXED_SMOKE
if any smoke objector is present | * SMOKE_.OBJ_WEIGHT
Music for each student’s objection clash- | 2 * # clashes *
ing with another student’s prefer- | ERR_MIXED_MUSIC
ence (both penalized)
Study not completely late studiers, or | # late studiers *
Late not, lateness specifiers suffer min[lateyes/no| *
ERR_MIXED_STUDY_LATE
Age Dif- || for each student in the room with | each student’s max[Aage| >
ference a dob, max[Aage] between every- | ACCEPT_AGE_DIFF *
one unacceptable ERR_AGE_DIFF
Group’+ for each student in the room with- | w * # requested mates not
out requested roommates'® present *
ERR_GROUP_INCOMPLETE*
Suite each adjoining room’s Group,
Gender, and Smoke constraints
are re-evaluated upon a move
for the intermediate global grade
calculations
Partial room is partially filled or empty, | min[emptybeds, filledbeds] *
Fill 1 not including blocks # students *
ERR_PARTIAL_FILL
Triple Fill | double room is packed with three | # students *
students ERR_TRIPLE_FILL
First room has first time residents and | # first-time students *
Timer overriding renewals (old[nes]—firsts[nes])*

ERR_MIXED_FIRSTTIMER?

7

Appendix B. The DAO Objective Function

NOTES:

1. Gender became a ‘hard constraint’ in DAO version v0.93, guaranteeing the
randomly-chosen bed will always be the appropriate gender, without requiring

a large constraint value to ensure it.

2. Each student is allowed three hall choices, one special living option, one specific

room request, and a room type.
3. Where ncs is the number of consecutive semesters of dorm residency.

4. Where w is the weight based on the seniority (the number of concurrent
semesters residing in the dorms) times SENIORITY WEIGHT, plus any lottery
benefit, 1.

w = (senior * SENIORITY_WEIGHT) + !

Lottery benefit is based on the LOTTERY_BENEFIT: The tenths of a semester’s
seniority weight the first lottery number is worth. The last lottery number is
worth no extra priority. The Lottery number in the middle is worth half as
much as the first, the rest are distributed evenly in between. Lottery numbers
are tracked separately for new and returning students. To maintain distinct
seniority levels, the LOTTERY_BENEFIT should be less than one full semester’s
weight (9 at most). The lower this benefit, the better the overall assignments

will be since first-come order is just random noise to good matches.

5. The DORMS.INI configuration file designates the dorms with new resident and

underage restrictions.

6. For non-smokers, the DVNS special living option is a big exception because it

refers to the entire non-smoking building of DeVargas (version v1.00).

7. The DORMS.INI configuration file designates the dorms with better beds and
the beds that are better.

78

Appendix B. The DAO Objective Function

8.

9.

10.

11.

The ASSIGN.LST input file contains students’ current assignments in HMS.

Applies to rooms where the specific designation is either (not including virtu-

als). The 4+ indicates the constraint applies across adjoining suites.

A bestfriend is the first roommate requested when a double room is also re-
quested. A bestfriend must be present in the same room, an adjoining room is

not sufficient.

Minimizes the number of partially filled rooms and reduces the consolidation
process. This error compensates for the smaller music, age or other penalties,

but if too large, can disregard hall choices.

79

References

[AB83] David H. Ackley and Hans J. Berliner. The QBKG System: Knowledge
Representation for Producing and Explaining Judgments. Technical Report
CMU-CS-83-116, Carnegie-Mellon University, 1983.

[Ack87a] David H. Ackley. An Empirical Study of Bit Vector Function Optimization.
In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing.
Morgan Kaufmann Publishers, 1987.

[Ack87b] David H. Ackley. Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers, Boston, MA, 1987.

[AKvL97] E.H. Aarts, J. Korst, and P.J. van Laarhoven. Simulated Annealing. In
E. H. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, chapter 4. John Wiley and Sons, 1997.

[Ame] Ameritherm, Inc. Annealing.
On web at http://www.ameritherm.com/annlovrv.html. Accessed October
31, 2000.

[BGNZ96] H.E. Bomeijn, D.L. Graesser, S. Neogi, and Z.B. Zabinsky. Simulated
Annealing for Mixed Integer/Continuous Global Optimization, 1996. On
web at http://ideas.uqam.ca/ideas/data/Papers/fthtinber96-38.html.
Accessed October 31, 2000.

[Col94] The Concise Columbia Electronic Encyclopedia, Third Edition. Anneal-
ing, 1994. On web at http://www.encyclopedia.com. Accessed October 31,
2000.

[CSE96] Computational Science Education Project CSEP. Mathematical Optimiza-
tion, 1991, 1992, 1993, 1994, 1995, 1996. On web at
http://csepl.phy.ornl.gov/CSEP/MO/NODE28.html. Accessed October
31, 2000.

80

References

[DM84]

[DS00]

[EFCO8]

[Enc00a]

[Enc00b]

(Gib76]

K. Roscoe Davis and Patrick G. Mc Keown. Quantitative Models for Man-
agement. Kent Publishing Company, Boston, Massachusetts, 1984.

Jack Dongarra and Francis Sullivan. The Top 10 Algorithms. Computing
in Science & Engineering, 2(1), Jan/Feb 2000.

Saleh Elmohamed, Geoffrey Fox, and Paul Coddington. A Comparison of
Annealing Techniques for Academic Course Scheduling. In Proceedings of
the 2nd International Conference on the Practice and Theory of Automated
Timetabling, pages 146-166, Syracuse, NY, USA, Apr. 4 1998. Practice and
Theory of Automated Timetabling.

Microsoft Encarta Online Encyclopedia 2000. Metallography, 1997 - 2000.
On web at http://encarta.msn.com. Microsoft Corp. All Rights Reserved.
Accessed October 31, 2000.

Microsoft Encarta Online Encyclopedia 2000. Metalwork, 1997 - 2000. On
web at http://encarta.msn.com. Microsoft Corp. All Rights Reserved.
Accessed October 31, 2000.

Jean Dickinson Gibbons. Nonparametric Methods for Quantitative Analy-
sis (Second Edition). American Sciences Press, Inc, Columbus, Ohio, 1976.
Republished in 1985.

[HTdW97] Alain Hertz, Eric Taillard, and Dominique de Werra. Tabu Search. In

[JAMS9]

[JAMO1]

[KGV82]

[KGV83]

[Lee94]

E. H. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, chapter 5. John Wiley and Sons, 1997.

David S. Johnson, Cecilia R. Aragon, and Lyle A. Mc Geoch. Optimiza-
tion by Simulated Annealing: An Experimental Evaluation; Part I, Graph
Partitioning. Operations Research, 37(6):865-892, Nov-Dec 1989.

David S. Johnson, Cecilia R. Aragon, and Lyle A. Mc Geoch. Optimization
by Simulated Annealing: An Experimental Evaluation; Part II, Graph
Coloring and Number Partitioning. Operations Research, 39(3):378-406,
May-June 1991.

S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi. Optimization by Simulated
Annealing. Technical Report RC9355, IBM Research Report, 1982.

S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):498-516, May 1983.

F.H. Allisen Lee. Parallel Simulated Annealing on a Message-Passing
Multi-Computer, 1994.

81

References

[Mac99]

D.J.C. MacKay. Introduction to Monte Carlo Methods. In Michael I.
Jordan, editor, Learning in Graphical Models. MIT Press, 1999.

[MRR*53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,

[MS91]

[Pic87]

[RGS6]

[Rib]

[Sha]

[VLAST]

[Zar99)

Augusta H. Teller, and Edward Teller. Equation of State Calculations by
Fast Computing Machines. Journal of Chemical Physics, 21(6), June 1953.

B.M.E. Moret and H.D. Shapiro. Algorithms from P to NP, Volume L
Benjamin/Cummings Publishing Company, Redwood City, CA, 1991.

M. Piccioni. Combined Multistart-Annealing Algorithm for Continuous
Global Optimization, 1987.

On web at http://www.isr.umd.edu/TechReports/ISR/1987/TR_87-
45/TR_87-45.phtml. Accessed October 31, 2000.

R.E. Randelman and G.S. Grest. N-City Traveling Salesman Problem -
Optimization by Simulated Annealings. J. of Stat. Phys., 45:885-890, 1986.

Rita Almeida Ribeiro. Fuzzy Mathematical Programming. Presented at
UNM EECE Seminar. May 15, 2000. Albuquerque, NM.

Bassan Z. Shakhashiri. Science is Fun in the Lab of Shakhashiri.
University of Wisconsin-Madison Chemistry.

On web at http://www.scifun.chem.wisc.edu/WOP /RandomWalk.html.
Accessed October 31, 2000.

P.M.J. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and
Applications. Dordrecht Reidel Publishing Company, Dordrecht, Holland,
1987. Republished in 1989 by Kluwer Academic.

Jerrold H. Zar. Biostatistical Analysis — Fourth Edition. Prentice Hall,
Upper Saddle River, New Jersey, 1999.

82

the changing red heat
anneals to a cool calm stay —

local minimum

